
UNICORE Docs

2023 UNICORE

Apr 11, 2024

UNICORE DOCUMENTATION

1 Overview 3
1.1 UNICORE Features . 4

1.1.1 Services and APIs . 4
1.1.2 Security . 4
1.1.3 Clients . 4
1.1.4 Add-ons . 4

2 Getting started 5
2.1 Using UNICORE . 5
2.2 Evaluating UNICORE . 5
2.3 Deploying UNICORE . 5

3 How to setup UNICORE for a single HPC cluster 7
3.1 Overview . 7
3.2 Prerequisites . 8
3.3 Installing the TSI . 8

3.3.1 Preparations . 8
3.3.2 Download and install the Slurm TSI . 8

3.4 Installing the UNICORE Gateway and UNICORE/X . 9
3.4.1 Preparations . 9
3.4.2 Download and extract the UNICORE Server bundle . 9
3.4.3 Installing UNICORE Gateway and UNICORE/X . 10
3.4.4 Starting the Gateway . 10

3.5 UNICORE/X configuration . 11
3.5.1 Connecting UNICORE/X and TSI . 11
3.5.2 Starting UNICORE/X . 11
3.5.3 User authentication . 11
3.5.4 User account mapping . 12
3.5.5 Setting up batch queues . 12

3.6 Testing . 12
3.6.1 Authentication and user mapping . 12
3.6.2 Batch queue setup . 13
3.6.3 Test job . 13
3.6.4 Further testing . 14

3.7 Server certificate . 14
3.7.1 Generating the self-signed certificate . 14
3.7.2 Gateway config . 15
3.7.3 UNICORE/X config . 15

3.8 Getting support . 15

i

4 User Documentation 17
4.1 Introduction . 17

4.1.1 Why use UNICORE? . 17
4.1.2 What client should you use? . 18
4.1.3 Use case: job execution . 18

4.1.3.1 Executing commands via UNICORE . 18
4.1.3.2 Running batch jobs . 18
4.1.3.3 Advanced batch jobs . 19

4.2 UNICORE Commandline Client . 20
4.2.1 UCC Manual . 20

4.2.1.1 Overview . 20
4.2.1.2 Installation and configuration . 21

4.2.1.2.1 Prerequisites . 21
4.2.1.2.2 Download . 21
4.2.1.2.3 Installation and configuration . 21
4.2.1.2.4 Preferences file . 21
4.2.1.2.5 Logging . 22
4.2.1.2.6 Installing UCC extensions . 22
4.2.1.2.7 Testing the installation . 22

4.2.1.3 Getting started with UCC . 23
4.2.1.3.1 Getting help . 23
4.2.1.3.2 Connecting . 23
4.2.1.3.3 List available sites . 23
4.2.1.3.4 Running your first job . 23
4.2.1.3.5 Listing your jobs . 24

4.2.1.4 Common options to UCC . 24
4.2.1.4.1 User preferences . 24
4.2.1.4.2 Configuration file . 25
4.2.1.4.3 Username and password authentication 25
4.2.1.4.4 Support for token based authentication 26
4.2.1.4.5 Certificate-based authentication . 28
4.2.1.4.6 Truststore options . 28
4.2.1.4.7 Truststore examples . 30
4.2.1.4.8 Client options . 30
4.2.1.4.9 Other options . 32

4.2.1.5 Running jobs . 32
4.2.1.5.1 Introduction . 32
4.2.1.5.2 Options overview . 33
4.2.1.5.3 Resource selection . 33
4.2.1.5.4 Processing jobs asynchronously . 33
4.2.1.5.5 Executing a command . 35

4.2.1.6 Job description format . 35
4.2.1.6.1 UCC extensions to the UNICORE job description format 35

4.2.1.7 Data management functions . 38
4.2.1.7.1 Specifying remote locations . 38
4.2.1.7.2 Data movement . 38
4.2.1.7.3 General commands . 39
4.2.1.7.4 Finding data . 40
4.2.1.7.5 Using the StorageFactory service . 41

4.2.1.8 Metadata management functions . 41
4.2.1.8.1 Basics . 41
4.2.1.8.2 Available commands . 42

4.2.1.9 Workflows . 43
4.2.1.9.1 Introduction . 43

ii

4.2.1.9.2 Command overview . 43
4.2.1.9.3 Basic use . 44
4.2.1.9.4 Workflow description format . 44
4.2.1.9.5 Managing workflow data . 44
4.2.1.9.6 Resuming a held workflow . 45

4.2.1.10 Batch processing . 46
4.2.1.10.1 Options . 46
4.2.1.10.2 Performance tuning options . 46
4.2.1.10.3 Resource selection in batch mode . 47

4.2.1.11 The UCC shell . 47
4.2.1.11.1 Changing property settings . 47
4.2.1.11.2 Running an external command . 48
4.2.1.11.3 Exiting the shell . 48

4.2.1.12 Sharing resources . 48
4.2.1.12.1 Editing ACLs . 49
4.2.1.12.2 Permission levels . 49

4.2.1.13 Port forwarding / tunneling . 49
4.2.1.13.1 Example . 50
4.2.1.13.2 Final notes . 51

4.2.1.14 UCC for site administrators . 51
4.2.1.14.1 Security considerations . 51
4.2.1.14.2 Admin commands . 51
4.2.1.14.3 Listing jobs, sites, . 54
4.2.1.14.4 Low-level operations . 54

4.2.1.15 Scripting . 55
4.2.1.15.1 Script context . 55
4.2.1.15.2 Examples . 55

4.2.1.16 Frequently asked questions . 55
4.2.1.16.1 Configuration . 55
4.2.1.16.2 Usage . 56

4.2.2 Building the UCC . 56
4.2.2.1 Prerequisites . 56
4.2.2.2 Building Java code . 56
4.2.2.3 Creating distribution packages . 56

4.2.2.3.1 tgz . 56
4.2.2.3.2 deb . 57
4.2.2.3.3 rpm redhat . 57

4.3 REST API . 57
4.3.1 Basics . 58

4.3.1.1 Base URL . 58
4.3.1.2 User preferences . 58
4.3.1.3 Security session handling . 58

4.3.2 General API features . 59
4.3.2.1 Media types . 59
4.3.2.2 Error handling . 59
4.3.2.3 Paging mechanism, using tags and controlling the output 59
4.3.2.4 Modifying resource properties . 60

4.3.3 REST resources for jobs and data management . 61
4.3.3.1 Synopsis . 61
4.3.3.2 API Summary . 61
4.3.3.3 Site factories . 61

4.3.3.3.1 Synopsis . 61
4.3.3.3.2 API Summary . 61
4.3.3.3.3 Site properties . 62

iii

4.3.3.4 Sites . 62
4.3.3.4.1 Synopsis . 62
4.3.3.4.2 Creating a site . 62
4.3.3.4.3 Site properties . 62
4.3.3.4.4 Listing jobs . 63
4.3.3.4.5 API Summary . 63

4.3.3.5 Storages and files . 63
4.3.3.5.1 Synopsis . 63
4.3.3.5.2 Listing storages . 63
4.3.3.5.3 Data upload and download . 63
4.3.3.5.4 Creating directories . 64
4.3.3.5.5 Copying and renaming data to the same storage 64
4.3.3.5.6 Copying data to another server . 64
4.3.3.5.7 Files and metadata . 65
4.3.3.5.8 API Summary . 66

4.3.3.6 Storage factories . 67
4.3.3.6.1 Synopsis . 67
4.3.3.6.2 Creating storages . 67
4.3.3.6.3 API Summary . 67

4.3.3.7 Jobs . 67
4.3.3.7.1 Synopsis . 67
4.3.3.7.2 Job description format . 68
4.3.3.7.3 Data management . 68
4.3.3.7.4 Starting, aborting or restarting jobs . 68
4.3.3.7.5 API Summary . 68
4.3.3.7.6 Job properties . 69

4.3.3.8 Transfers . 69
4.3.3.8.1 Synopsis . 69
4.3.3.8.2 API Summary . 69

4.3.3.9 Workflow . 69
4.3.3.9.1 Synopsis . 69
4.3.3.9.2 API Summary . 70
4.3.3.9.3 Workflow submission . 70
4.3.3.9.4 Workflow description format . 70
4.3.3.9.5 Workflow properties . 70
4.3.3.9.6 Hold and resume . 70

4.3.4 Utility endpoints . 71
4.3.4.1 Getting the server certificate . 71
4.3.4.2 Creating a token . 71

4.3.5 Examples and HowTos . 71
4.3.5.1 Rest API Examples . 71

4.3.5.1.1 Basic job submission . 72
4.3.5.1.2 Storages and data management . 72
4.3.5.1.3 Workflow submission and management 72

4.4 Job description format . 75
4.4.1 Overview . 75
4.4.2 Job elements . 77

4.4.2.1 Job types . 77
4.4.2.2 Specifying the executable or application . 77
4.4.2.3 Arguments and Environment settings . 77
4.4.2.4 Argument sweeps . 78
4.4.2.5 Application parameters . 78
4.4.2.6 Parameter sweeps . 78
4.4.2.7 Pre- and postprocessing . 79

iv

4.4.3 Job data management . 79
4.4.3.1 Jobs without client-controlled stage in . 79
4.4.3.2 Importing files into the job workspace . 80
4.4.3.3 Using inline data to import a file into the job workspace 81
4.4.3.4 Staging in from git . 81
4.4.3.5 Sweeping over a stage-in file . 82

4.4.4 Exporting result files from the job workspace . 82
4.4.4.1 Specifying credentials for data staging . 83

4.4.5 Redirecting standard input . 84
4.4.6 Resources . 84

4.4.6.1 Specifying resources . 84
4.4.6.2 Specifying an accounting project . 85

4.4.7 Miscellaneous options . 85
4.4.7.1 Umask . 85
4.4.7.2 Job tags . 85
4.4.7.3 Specifying a URL for receiving notifications . 85
4.4.7.4 Advanced notification settings (UNICORE 9.2.0 and later) 86
4.4.7.5 Specifying the job name . 86
4.4.7.6 Specifying the user email for batch system notifications 86

4.5 Workflow description . 87
4.5.1 Introduction . 87
4.5.2 Overview and simple constructs . 87
4.5.3 Activities . 88
4.5.4 Subworkflows . 89
4.5.5 Job activities . 89
4.5.6 Data handling . 91
4.5.7 Transitions and conditions . 91
4.5.8 Using workflow variables . 92
4.5.9 Loop constructs . 93

4.5.9.1 While and repeat-until loops . 93
4.5.9.2 For-each loop . 94
4.5.9.3 The values element . 95
4.5.9.4 The variables element . 95
4.5.9.5 The file_sets element . 96
4.5.9.6 Indirection . 96
4.5.9.7 Chunking . 97

4.5.10 Examples . 98
4.5.10.1 Simple two-step workflow with data dependency 99
4.5.10.2 Simple diamond graph . 99
4.5.10.3 Conditional execution in an if-else construct . 100
4.5.10.4 While loop example using workflow variables . 101
4.5.10.5 For-each loop example . 102

4.6 Data-triggered processing . 103
4.6.1 What is data-triggered processing? . 103
4.6.2 Setting up data-triggered processing . 103
4.6.3 Controlling the scanning process . 103

4.6.3.1 Rules . 104
4.6.3.1.1 Variables . 105
4.6.3.1.2 Job action . 105
4.6.3.1.3 Batched job action . 105
4.6.3.1.4 Metadata extraction . 105
4.6.3.1.5 Sending notifications . 106

4.6.3.2 Logging . 106
4.6.4 Stopping the processing . 106

v

4.6.5 Example . 106

5 Administrator Documentation 109
5.1 Gateway . 109

5.1.1 Gateway Manual . 111
5.1.1.1 Installation . 112

5.1.1.1.1 Prerequisites . 112
5.1.1.1.2 Installation from the Server bundle . 112
5.1.1.1.3 Installation from a Linux package (rpm or deb) 112

5.1.1.2 Upgrading . 112
5.1.1.3 Configuration . 112

5.1.1.3.1 Java and environment settings: startup.properties 113
5.1.1.3.2 Configuring sites: connections.properties 113
5.1.1.3.3 Main server settings: gateway.properties 113
5.1.1.3.4 Require end-user certificates . 121

5.1.1.4 Using Apache httpd as a frontend . 121
5.1.1.4.1 Requirements . 121
5.1.1.4.2 External references . 121

5.1.1.5 Using the Gateway for failover and/or loadbalancing of UNICORE sites 121
5.1.1.5.1 Configuration . 122
5.1.1.5.2 Available strategies . 122

5.1.1.6 Gateway failover and migration . 123
5.1.1.6.1 Gateway’s migration . 123
5.1.1.6.2 Failover and loadbalancing of the Gateway 123

5.2 UNICORE/X . 124
5.2.1 UNICORE/X Manual . 124

5.2.1.1 Getting started . 124
5.2.1.1.1 Prerequisites . 124
5.2.1.1.2 Installation . 125

5.2.1.2 Configuration of UNICORE/X . 126
5.2.1.2.1 Overview of the main configuration options 126
5.2.1.2.2 Config file overview . 126
5.2.1.2.3 Settings for the UNICORE/X process (e.g. memory) 127
5.2.1.2.4 Config file formats . 127
5.2.1.2.5 UNICORE/X container configuration overview 128
5.2.1.2.6 Integration of UNICORE/X with other parts of a UNICORE infrastructure 130
5.2.1.2.7 Security . 131
5.2.1.2.8 Configuring the execution backend (XNJS and TSI) 136
5.2.1.2.9 Configuring storage services . 136
5.2.1.2.10 HTTP proxy, timeout and web server settings 136
5.2.1.2.11 Features provided by UNICORE/X . 140

5.2.1.3 Registry . 141
5.2.1.4 Administration . 141

5.2.1.4.1 Controlling UNICORE/X memory usage 141
5.2.1.4.2 Logging . 142
5.2.1.4.3 Administration and monitoring . 143
5.2.1.4.4 Migration of a UNICORE/X server to another physical host 145

5.2.1.5 Security concepts in UNICORE/X . 145
5.2.1.5.1 Security concepts . 145

5.2.1.6 Authentication . 147
5.2.1.6.1 Introduction . 147
5.2.1.6.2 Username-password file . 148
5.2.1.6.3 Unity authentication using OAuth Bearer token 148
5.2.1.6.4 Unity authentication using username/password 149

vi

5.2.1.6.5 OAuth token authentication with an OIDC server 149
5.2.1.6.6 X.509 certificate . 150
5.2.1.6.7 PAM . 150
5.2.1.6.8 Customizing JWT Delegation . 150

5.2.1.7 Attribute sources . 151
5.2.1.7.1 UNICORE incarnation and authorization attributes 151
5.2.1.7.2 Configuring Attribute Sources . 153
5.2.1.7.3 Available attribute sources . 154

5.2.1.8 Virtual Organisations (VO) Support . 157
5.2.1.8.1 Overview . 157
5.2.1.8.2 Configuration . 158
5.2.1.8.3 VO (SAML) configuration HOWTOs . 162

5.2.1.9 The UNICORE persistence layer . 164
5.2.1.9.1 Configuring the persistence layer . 165

5.2.1.10 Interfacing UNICORE/X to the TSI . 169
5.2.1.10.1 The UNICORE TSI . 169
5.2.1.10.2 Operation without a UNICORE TSI . 174

5.2.1.11 The IDB . 174
5.2.1.11.1 Defining the IDB location . 175
5.2.1.11.2 IDB syntax description . 176
5.2.1.11.3 IDB Application definitions . 181
5.2.1.11.4 Application argument metadata . 185

5.2.1.12 Data staging . 186
5.2.1.12.1 SCP support . 186
5.2.1.12.2 GridFTP . 188
5.2.1.12.3 Configuration reference . 188

5.2.1.13 UFTP setup . 188
5.2.1.13.1 Configuring multiple UFTPD servers . 190

5.2.1.14 Configuration of storages . 191
5.2.1.14.1 Configuring storage services . 191
5.2.1.14.2 Configuring storages attached to TargetSystem instances 193
5.2.1.14.3 Configuring the StorageFactory service 195
5.2.1.14.4 Configuring the job working directory storage services 197

5.2.1.15 The UNICORE metadata service . 198
5.2.1.15.1 Configuring metadata support . 198
5.2.1.15.2 Controlling metadata extraction . 199

5.2.1.16 Data-triggered processing . 199
5.2.1.17 Authorization back-end (PDP) guide . 200

5.2.1.17.1 Basic configuration . 200
5.2.1.17.2 Available PDP modules . 201

5.2.1.18 Guide to XACML security policies . 203
5.2.1.18.1 Policy sets and combining of results . 204
5.2.1.18.2 Role-based access to services . 204
5.2.1.18.3 Limiting access to services to the service instance owner 206
5.2.1.18.4 More details on XACML use in UNICORE/X 206

5.2.2 UNICORE/X Update . 206
5.3 TSI . 207

5.3.1 TSI Manual . 208
5.3.1.1 Prerequisites . 208
5.3.1.2 Installation . 208

5.3.1.2.1 Batch system specific distribution . 208
5.3.1.2.2 Generic distribution . 209
5.3.1.2.3 File permissions . 209

5.3.1.3 Configuring the TSI . 209

vii

5.3.1.3.1 Verifying . 209
5.3.1.3.2 TSI networking configuration . 210
5.3.1.3.3 UNICORE/X configuration . 210
5.3.1.3.4 ACL support . 211
5.3.1.3.5 Enabling SSL for the UNICORE/X - TSI communication 212

5.3.1.4 Adapting the TSI to your system . 213
5.3.1.4.1 Environment and paths . 213
5.3.1.4.2 Assigning groups to the current user . 214
5.3.1.4.3 Batch system integration: BSS.py . 214
5.3.1.4.4 Reporting free disk space . 214
5.3.1.4.5 Reporting computing time budget . 214
5.3.1.4.6 Filtering cluster working nodes . 214
5.3.1.4.7 Resource reservation . 215

5.3.1.5 Execution model . 215
5.3.1.6 PAM, systemd and user slices . 215
5.3.1.7 Directories used by the TSI . 216
5.3.1.8 Running the TSI . 216

5.3.1.8.1 Starting . 216
5.3.1.8.2 Stopping the TSI . 216
5.3.1.8.3 TSI logging . 216

5.3.1.9 Porting the TSI to other batch systems . 217
5.3.1.10 Securing and hardening the system . 217

5.3.2 TSI API . 218
5.3.2.1 Initialisation . 218
5.3.2.2 Messages to the UNICORE/X server . 218
5.3.2.3 User identity and environment setting . 219
5.3.2.4 Method dispatch . 219
5.3.2.5 Job execution and job control functions . 219

5.3.2.5.1 Job submission (#TSI_SUBMIT) . 219
5.3.2.5.2 Script execution (#TSI_EXECUTESCRIPT) 221
5.3.2.5.3 Job control . 221
5.3.2.5.4 Detailed job info (#TSI_GETJOBDETAILS) 222
5.3.2.5.5 Status listing (#TSI_QSTAT) . 222
5.3.2.5.6 Getting the user’s remaining compute budget

(#TSI_GET_COMPUTE_BUDGET) . 223
5.3.2.6 I/O functions . 223

5.3.2.6.1 Reading a file (#TSI_GETFILECHUNK) 223
5.3.2.6.2 Writing files (#TSI_PUTFILECHUNK) 224
5.3.2.6.3 File ACL operations (#TSI_FILE_ACL) 225
5.3.2.6.4 Listing directories and getting file information (#TSI_LS) 225
5.3.2.6.5 Getting free disk space (#TSI_DF) . 225

5.3.2.7 Resource reservation functions . 226
5.3.2.7.1 Creating a reservation (#TSI_MAKE_RESERVATION) 226
5.3.2.7.2 Cancelling a reservation (#TSI_CANCEL_RESERVATION) 226

5.3.2.8 Miscellaneous functions . 227
5.3.2.8.1 Getting TSI version information (#TSI_PING) 227
5.3.2.8.2 Getting user information (#TSI_GET_USER_INFO) 227

5.3.3 Building the TSI . 228
5.3.3.1 Packaging . 228
5.3.3.2 Generic binary TGZ . 228

5.4 XUUDB . 228
5.4.1 XUUDB Manual . 229

5.4.1.1 Overview . 229
5.4.1.1.1 The classic mapping . 230

viii

5.4.1.1.2 The dynamic mapping . 230
5.4.1.2 Installation . 231

5.4.1.2.1 Installation from Core Server Bundle . 231
5.4.1.2.2 Installation from RPM or DEB packages 231

5.4.1.3 The XUUDB server . 231
5.4.1.3.1 Security . 231
5.4.1.3.2 Administrative access . 232
5.4.1.3.3 Configuration . 232
5.4.1.3.4 Configuring PKI trust settings . 236
5.4.1.3.5 Dynamic mappings configuration . 240
5.4.1.3.6 Starting the XUUDB server . 245
5.4.1.3.7 Stopping the server . 245
5.4.1.3.8 Logging . 245

5.4.1.4 The admin client . 247
5.4.1.4.1 Configuring advanced HTTP client settings 247
5.4.1.4.2 Commands . 249
5.4.1.4.3 Adding entries using add or adddn . 250
5.4.1.4.4 Checking the content . 250
5.4.1.4.5 Removing entries . 250
5.4.1.4.6 Exporting/importing . 251
5.4.1.4.7 Updating entries . 251

5.5 Workflow Service . 251
5.5.1 Workflow Service Manual . 252

5.5.1.1 Installing and setting up the UNICORE Workflow engine 252
5.5.1.1.1 Prerequisites . 252
5.5.1.1.2 Updating from previous versions . 252
5.5.1.1.3 Installation . 252
5.5.1.1.4 Setup . 253
5.5.1.1.5 Verifying the installation . 253
5.5.1.1.6 API documentation . 254

5.5.1.2 Configuration of the Workflow server . 254
5.5.1.2.1 Workflow processing . 254
5.5.1.2.2 XNJS settings . 255
5.5.1.2.3 Property reference . 255

5.5.1.3 Updating an existing UNICORE Workflow service 256
5.5.1.3.1 Stop the server . 256
5.5.1.3.2 Backup . 257
5.5.1.3.3 Update jar files . 257
5.5.1.3.4 Update config files . 257
5.5.1.3.5 Restart the servers . 257

5.6 Registry . 257
5.6.1 Installation . 257

5.6.1.1 Prerequisites . 257
5.6.1.2 A note on paths . 258

5.6.2 Registry configuration . 258
5.6.2.1 Registry configuration (CONF/uas.config) . 258
5.6.2.2 Starting and stopping . 258
5.6.2.3 Access control . 258
5.6.2.4 User / server authentication . 259
5.6.2.5 Gateway configuration . 259
5.6.2.6 UNICORE/X configuration . 259
5.6.2.7 Client configuration . 259

6 Getting Support 261

ix

6.1 Links . 261
6.2 Support . 261

7 License 263
7.1 License . 263

x

UNICORE Docs

UNICORE (UNiform Interface to COmputing REsources) offers a ready-to-run system including client and server
software. It makes distributed computing and data resources available in a seamless and secure way in intranets and
the internet.

Fig. 1: Federating HPC with UNICORE

• Overview gives an overview of the UNICORE features and the UNICORE architecture.

• Getting started shows how to get going quickly.

• How to setup UNICORE for a single HPC cluster covers the steps required to install a minimal set of

UNICORE services for a single HPC cluster that is running Slurm.

UNICORE DOCUMENTATION 1

https://www.unicore.eu

UNICORE Docs

2 UNICORE DOCUMENTATION

CHAPTER

ONE

OVERVIEW

UNICORE (UNiform Interface to COmputing REsources) provides tools and services for building federated systems,
making high-performance computing and data resources accessible in a seamless and secure way for a wide variety of
applications in intranets and the internet.

Fig. 1.1: UNICORE Architecture

3

https://www.unicore.eu

UNICORE Docs

1.1 UNICORE Features

UNICORE provides a comprehensive set of RESTful APIs for HPC access and workflows, dealing with user authenti-
cation, user account mapping and authorization in a highly flexible way.

1.1.1 Services and APIs

• Batch jobs with pre- and post-processing

• Support for common resource managers such as SLURM or LSF

• File system access and file transfer

• Site-to-site file transfer

• Cross-site workflows featuring graphs, loops, conditions, variables, hold/continue, workflow data management

• Direct access to applications running on HPC (e.g. for steering or visualisation)

• Metadata

• Rule based file processing

• Service Registry

1.1.2 Security

• Flexible user authentication: username/password, OpenID Connect, SSH keys, X.509, . . .

• Flexible mapping of users to local accounts and groups

• Based on open standards: X.509 Public Key Infrastructure, TLS, SAML, OIDC, XACML, . . .

1.1.3 Clients

• Commandline client: Job execution, data transfer, workflows, scripting, batch mode, extensible

• Dedicated client for UFTP high performance file transfer and data management features

• pyUNICORE Python client library

1.1.4 Add-ons

• Standalone UFTP suite for high-performance data transfer (can be used independently of UNICORE)

• Unity Identity Management system, supports LDAP, OAuth, SAML, federated AAI and a lot more

4 Chapter 1. Overview

https://uftp-docs.readthedocs.io/en/latest/user-docs/uftp-client/
https://pyunicore.readthedocs.io/
https://uftp-docs.readthedocs.io/en/latest
https://unity-idm.eu

CHAPTER

TWO

GETTING STARTED

2.1 Using UNICORE

If you are an end-user or application developer who wishes to use an existing UNICORE installation, have a look
at the user documentation for the UNICORE Commandline Client, the PyUNICORE client library or the REST API
documentation.

2.2 Evaluating UNICORE

If you wish to experiment with a UNICORE server installation or wish to quickly evaluate UNICORE’s features, you
can try our UNICORE Docker image.

Also, you can download the Core Server Bundle which can be installed very quickly on a single test machine or even
your laptop.

2.3 Deploying UNICORE

Full production deployments of UNICORE range from minimalistic to rather complex, depending on your requirements,
use cases and existing infrastructure.

A few starting points:

1. for each target resource (e.g. a compute cluster) you need a TSI and a UNICORE/X The TSI is deployed on
the cluster login node(s), while UNICORE/X requires a VM or server, UNICORE/X should NOT be run on a
machine where users can log in.

2. we strongly recommend running a Gateway, one for all of an institution/company’s UNICORE services is
enough. This will shield the services from direct external access for added security.

3. For the services (except TSI where this is optional), you will need server certificate(s) from a CA (similar to a
web server)

4. for multi-site workflows, you will need a Registry and a Workflow service

You can always contact us for advice in your specific situation.

5

https://pyunicore.readthedocs.io/
https://github.com/UNICORE-EU/tools/tree/master/unicore-docker-image
https://sourceforge.net/projects/unicore/files/Servers/Core/

UNICORE Docs

6 Chapter 2. Getting started

CHAPTER

THREE

HOW TO SETUP UNICORE FOR A SINGLE HPC CLUSTER

3.1 Overview

This How-To covers in detail the steps required to install a minimal set of UNICORE services for a single HPC cluster
that is running Slurm.

The following steps will be described:

• setup the Slurm TSI on a HPC login node

• deploy UNICORE Gateway and UNICORE/X on one VM or physical server

• connect UNICORE/X and TSI

• add test user(s)

• make a Slurm queue accessible via UNICORE

• test the installation via curl

• replace the demo certificate by a more secure self-signed certificate for Gateway and UNICORE/X

Fig. 3.1: Example deployment for a single cluster

7

UNICORE Docs

3.2 Prerequisites

• a server or VM with Java 11 or later and Python3 installed

• port 8080 on this server must be accessible from the Internet if you want to let external users access your cluster.

In the following, we will refer to this machine as unicore-host. Adapt the following code examples according to
your actual machine name.

• access to the HPC login node(s) with Python3 installed. Since UNICORE requires a TCP connection from the
unicore-host to the login node(s), and another TCP connection from the login node(s) to the unicore-host,
the local firewall rules might need to be adapted accordingly. Details will be given below.

3.3 Installing the TSI

The TSI is a server daemon written in Python and is installed on (one or more) HPC login nodes.

The HPC login node will be named hpc-login in the following.

3.3.1 Preparations

• SSH as root into the login node:

• Add a unicore user and a directory for the UNICORE TSI:

/usr/sbin/groupadd -r unicore
/usr/sbin/useradd -c "UNICORE" -g unicore -s /bin/false -r -d /tmp unicore
mkdir -p /opt/unicore
chown unicore:unicore /opt/unicore

3.3.2 Download and install the Slurm TSI

cd /opt/unicore

wget https://sourceforge.net/projects/unicore/files/Servers/Core/9.3.1/unicore-tsi-9.3.1.
→˓tgz -O unicore-tsi-9.3.1.tgz

tar xf unicore-tsi-9.3.1.tgz
rm unicore-tsi-9.3.1.tgz
cd unicore-tsi-9.3.1

./Install.sh slurm /opt/unicore/tsi

chown -R unicore:unicore /opt/unicore/tsi

cd /opt/unicore/tsi/conf

log to file in /opt/unicore/tsi/logs/ instead of syslog
sed -i "s/use_syslog=.*/use_syslog=0/" tsi.properties

(continues on next page)

8 Chapter 3. How to setup UNICORE for a single HPC cluster

UNICORE Docs

(continued from previous page)

configure the hostname of the UNICORE/X machine
sed -i "s/unicorex_machine=.*/unicorex_machine=unicore-host/" tsi.properties

You can start the TSI now and see if there are any errors in the log file:

rm -f /opt/unicore/tsi/logs/*
/opt/unicore/tsi/bin/start.sh
cat /opt/unicore/tsi/logs/TSILog_*

3.4 Installing the UNICORE Gateway and UNICORE/X

The two Java-based server components will be installed on the host named unicore-host. We assume that Java 11
or later is installed.

Check that

java --version

works and shows the correct version.

After this step, the UNICORE installation will be accessible at

https://unicore-host:8080/TEST/rest/core.

3.4.1 Preparations

• SSH into unicore-host

• Add a unicore user and a directory for the UNICORE components:

/usr/sbin/groupadd -r unicore
/usr/sbin/useradd -c "UNICORE" -g unicore -s /bin/false -r -d /tmp unicore
mkdir -p /opt/unicore
chown unicore:unicore /opt/unicore

3.4.2 Download and extract the UNICORE Server bundle

cd /opt/unicore

wget https://sourceforge.net/projects/unicore/files/Servers/Core/9.3.1/unicore-servers-9.
→˓3.1.tgz -O unicore-servers-9.3.1.tgz

tar xf unicore-servers-9.3.1.tgz
chown -R unicore:unicore unicore-servers-9.3.1
rm unicore-servers-9.3.1.tgz

3.4. Installing the UNICORE Gateway and UNICORE/X 9

UNICORE Docs

3.4.3 Installing UNICORE Gateway and UNICORE/X

We will install the Gateway to /opt/unicore/gateway and UNICORE/X to /opt/unicore/unicorex using the
configure.py and install.py scripts.

Here we can already set the TSI host (hpc-login) and configure the Gateway to listen on all addresses and route
requests to UNICORE/X under the TEST alias.

We also tell UNICORE/X what the public hostname of the UNICORE installation will be (unicore-host) and where
the job directories should be created on the HPC cluster.

cd unicore-servers-9.3.1

TSI is running on 'hpc-login'
sed -i "s/uxTSIHost=.*/uxTSIHost=hpc-login/" configure.properties

Public address is 'unicore-host'
sed -i "s/uxGatewayHost=.*/uxGatewayHost=unicore-host/" configure.properties

sed -i "s/uxName=.*/uxName=TEST/" configure.properties

sed -i 's%uxTSIWorkingDirectoriesBasedir=.*%uxTSIWorkingDirectoriesBasedir=$HOME/UNICORE_
→˓Jobs%' configure.properties

sed -i "s/tsi=true/tsi=false/" configure.properties

sed -i "s/gwHost=.*/gwHost=0.0.0.0/" configure.properties

sed -i "s%INSTALL_PATH=currentdir%INSTALL_PATH=/opt/unicore%" configure.properties

setup the configuration files and copy the required files to '/opt/unicore'

sudo -u unicore ./configure.py
sudo -u unicore ./install.py

3.4.4 Starting the Gateway

The Gateway files can now be found in /opt/unicore/gateway and the server is started like this:

cd /opt/unicore/gateway

sudo -u unicore bin/start.sh

Logs are in /opt/unicore/gateway/logs.

To check for any errors:

cat /opt/unicore/gateway/logs/gateway.log | grep ERROR

The Gateway should now be accessible. A simple test using curl would be:

curl -k -i https://unicore-host:8080

(which will return some HTML)

10 Chapter 3. How to setup UNICORE for a single HPC cluster

UNICORE Docs

3.5 UNICORE/X configuration

The UNICORE/X files are now in /opt/unicore/unicorex.

UNICORE/X is the central component in a UNICORE installation, and consequently has quite a few configuration
options.

Here we focus on a very basic setup, and refer to the full manual for more information.

3.5.1 Connecting UNICORE/X and TSI

This part is configured in the file /opt/unicore/unicorex/conf/tsi.config.

UNICORE/X and TSI communicate via TCP. There are two connections:

1. From the UNICORE/X host to the TSI (HPC login node) on port 4433

2. From the HPC login node to the UNICORE/X host on port 7654

Make sure your firewall(s) allow both these connections.

3.5.2 Starting UNICORE/X

The UNICORE/X server is started like this:

cd /opt/unicore/unicorex

sudo -u unicore bin/start.sh

Logs are in /opt/unicore/unicorex/logs.

To check for any errors:

cat /opt/unicore/unicorex/logs/startup.log | grep ERROR
cat /opt/unicore/unicorex/logs/unicorex.log | grep ERROR

As a first check via the REST API, you can run

curl -k -H "Accept: application/json" https://unicore-host:8080/TEST/rest/core | python3␣
→˓-m json.tool

3.5.3 User authentication

To understand the security concepts in UNICORE, please read this section in the UNICORE/X manual.

In the configuration we have set up so far, UNICORE will authenticate users via username/password, which are con-
figured in a file

/opt/unicore/unicorex/conf/rest-users.txt

A default user demouser with password test123 is pre-configured, you can add others.

Many other options for authentication exist, and we can only refer to the Authentication section in the UNICORE/X
manual.

3.5. UNICORE/X configuration 11

UNICORE Docs

3.5.4 User account mapping

In the configuration we have set up so far, users are mapped to HPC accounts in the file

/opt/unicore/unicorex/conf/simpleuudb

Make sure to add account mappings for your users there.

Other options for account mapping exist, we refer to the Attribute sources section in the UNICORE/X manual.

3.5.5 Setting up batch queues

The available batch system queues are configured in the file

/opt/unicore/unicorex/conf/idb.json

A partition named batch is already in there, make sure to have a look and adapt it to your needs.

For more information, we refer to the IDB syntax section in the UNICORE/X manual.

3.6 Testing

3.6.1 Authentication and user mapping

To check that the authentication and user mapping works as intended, you can run the following

export BASE=https://unicore-host:8080/TEST/rest/core

curl -k -u demouser:test123 -H "Accept: application/json" $BASE?fields=client | python3 -
→˓m json.tool

where the output will look approximately like this

{
"client": {

"role": {
"selected": "user",
"availableRoles": [

"user"
]

},
"authenticationMethod": "PASSWORD_FILE",
"dn": "CN=Demo User, O=UNICORE, C=EU",
"xlogin": {

"UID": "demouser",
"availableGroups": [],
"availableUIDs": [

"demouser"
]

}
}

}

12 Chapter 3. How to setup UNICORE for a single HPC cluster

UNICORE Docs

3.6.2 Batch queue setup

To check the available batch queues,

export BASE=https://unicore-host:8080/TEST/rest/core

curl -k -H "Accept: application/json" $BASE/factories/default_target_system_factory?
→˓fields=resources | python3 -m json.tool

which will look similar to this

{
"resources": {

"batch": {
"CPUsPerNode": "1-4",
"Runtime": "10-86000",
"MemoryPerNode": "1048576-1073741824",
"Nodes": "1-16",
"TotalCPUs": "1-64"

}
}

}

3.6.3 Test job

Create a file test1.json with the following content

{
"Executable": "date"

}

and submit it using

export BASE=https://unicore-host:8080/TEST/rest/core

curl -k -i -u demouser:test123 -H "Content-Type: application/json" --data-ascii @test1.
→˓json $BASE/jobs

which should result in something like this

HTTP/1.1 201 Created
Date: Tue, 04 Jul 2023 09:59:38 GMT
X-Frame-Options: DENY
Content-Type: application/json;charset=utf-8
X-UNICORE-SecuritySession: 192ae773-650b-45bf-93fb-5552739f5460
X-UNICORE-SecuritySession-Lifetime: 28799354
Location: https://unicore-host:8080/TEST/rest/core/jobs/78b1a586-3f66-4f5b-bb8d-
→˓7fe1d8fe7b87
Transfer-Encoding: chunked

Check the UNICORE/X logs in case of errors. To check whether the job runs properly, check the logs. You can also
access the job via the REST API, the URL to use is given in the Location field above

3.6. Testing 13

UNICORE Docs

export JOB=https://unicore-host:8080/TEST/rest/core/jobs/78b1a586-3f66-4f5b-bb8d-
→˓7fe1d8fe7b87

curl -k -u demouser:test123 -H "Accept: application/json" $JOB | python3 -m json.tool

3.6.4 Further testing

We recommend downloading the UNICORE commandline client, or using PyUNICORE for further tests.

3.7 Server certificate

Up to now, the so-called demo certificates that come with the download have been used. While this is OK for testing
and setup, it is VERY BAD to expose such a server to the outside world, since anyone who knows what they are doing
can easily get access to your installation.

Ideally you will get an SSL certificate from a CA (Certification Authority) for your machine and use that. It’s however
beyond the scope of this how-to to give a full introduction to SSL certificates.

As an improvement over the demo certificates, we will create a so-called self-signed certificate and use that, which
is secure enough to expose the system to outside users, but is usually not good enough when integrating UNICORE
access with external applications, or integrating your UNICORE installation into a bigger setup or federation.

3.7.1 Generating the self-signed certificate

The following uses OpenSSL to create a self-signed certificate

cd /opt/unicore/certs

openssl req -x509 -newkey rsa:4096 -sha256 -nodes -days 3650 \
-keyout server-key.pem \
-out server-cert.pem \
-subj "/C=EU/O=Test/CN=unicore-host"

chown unicore:unicore server-*.pem

cat server-cert.pem >> server-key.pem

The file server-key.pem is now suitable as server credential, and the server-cert.pem will be used as the server truststore.
We will use the same key and cert for both UNICORE/X and Gateway.

14 Chapter 3. How to setup UNICORE for a single HPC cluster

https://pyunicore.readthedocs.io/

UNICORE Docs

3.7.2 Gateway config

We configure our new credential and trusted certificate in the file /opt/unicore/gateway/conf/gateway.properties:

cd /opt/unicore/gateway/conf

sed -i "s%credential.path=.*%credential.path=/opt/unicore/certs/server-key.pem%" gateway.
→˓properties
sed -i "s%credential.password=.*%credential.password=%" gateway.properties

sed -i "s%directoryLocations.1=.*%directoryLocations.1=/opt/unicore/certs/server-cert.pem
→˓%" gateway.properties

Restart via:

cd /opt/unicore/gateway
bin/stop.sh
sudo -u unicore bin/start.sh

Check the logs for any errors!

3.7.3 UNICORE/X config

We configure our new credential and trusted certificate in the file /opt/unicore/unicorex/conf/container.properties:

cd /opt/unicore/unicorex/conf

sed -i "s%credential.path=.*%credential.path=/opt/unicore/certs/server-key.pem%"␣
→˓container.properties
sed -i "s%credential.password=.*%credential.password=%" container.properties

sed -i "s%directoryLocations.1=.*%directoryLocations.1=/opt/unicore/certs/server-cert.pem
→˓%" container.properties

Restart via:

cd /opt/unicore/unicorex
bin/stop.sh
sudo -u unicore bin/start.sh

Check the logs for any errors!

3.8 Getting support

You can always contact us for advice in your specific situation.

3.8. Getting support 15

UNICORE Docs

16 Chapter 3. How to setup UNICORE for a single HPC cluster

CHAPTER

FOUR

USER DOCUMENTATION

• Introduction Introduction for UNICORE users.

• UNICORE Commandline Client A full featured commandline client for UNICORE.

• REST API REST-API for the UNICORE/X server (job submission and management, data access and

data transfer) and the Workflow server (workflow submission and management).

• Job description format The job description format that allows you to specify the application or exe-

cutable you want to run, arguments and environment settings, any files to stage in from remote servers and
any result files to stage out.

• Workflow description The workflow description language that is supported by the Workflow engine.

• Data-triggered processing Reference for the data-triggered processing in UNICORE/X.

4.1 Introduction

This document gives an introduction for new UNICORE users - what can UNICORE do for you?

4.1.1 Why use UNICORE?

The main functionality offered by UNICORE is a secure and flexible programmatic access to HPC compute and storage.

You can use UNICORE for all those tasks where the “usual” SSH access is not flexible or not secure enough:

• automation tasks

• multi-step and even multi-site workflows

• hybrid cloud/HPC applications

• integration into third party (web) applications

17

UNICORE Docs

4.1.2 What client should you use?

For most of the common end-user tasks, like interactive use, scripting, automation etc, the UNICORE Commandline
client will be the most convenient. It provides a fully-fledged commandline tool.

For integration into third party applications, we provide a Python library PyUNICORE.

If you are not using Python (or Java), you can always directly use the REST API .

4.1.3 Use case: job execution

Running jobs is the backbones of UNICORE - you can use it as a fancy job submission and job monitoring tool, or
simply as a “replacement” for SSH.

4.1.3.1 Executing commands via UNICORE

To simply run a command on a login node of the HPC cluster, you can use the ucc exec command

ucc exec -- whoami

This will run the command and get standard output and error back to the client and display them.

For more complex cases, you can create a JSON job description and run that via UCC.

{
"Job type": "ON_LOGIN_NODE",
"Executable": "/bin/bash ./myscript.sh",
"Imports": [
{
"From": "inline://dummy", "To": "myscript.sh",
"Data": [

"whoami",
"hostname",
"date"

]
}

]
}

which you can then run via ucc run.

For simplicity, this example puts the script directly in the job via an “inline” data transfer. There’s a number of other
options available to deal with file transfers.

4.1.3.2 Running batch jobs

The most common use case on a HPC system is the batch job - your job gets submitted to the cluster’s queueing system
(e.g. Slurm), and is executed whenever the required resources become available.

You as the user need to provide the required resources - which queue, how long do you need the job to run, how many
nodes etc, as well as the command to execute.

For example to run 4 instances of “date” on one node of a cluster, the job would look like this:

18 Chapter 4. User Documentation

https://pyunicore.readthedocs.io/

UNICORE Docs

{
"Executable": "srun -ntasks=4 date",
"Resources": {
"Nodes": 1,
"Runtime": 30

}
}

Running this job via ucc run will submit and monitor the job, waiting for its completion and then download the
standard output and error files. UCC has many options to modify this behaviour, and you will often submit the job
without waiting for it to finish.

The ucc list-jobs command is used to list all your jobs (that were submitted via UNICORE), and you can use other
ucc commands to interact with the job or download results.

4.1.3.3 Advanced batch jobs

If you prefer to use a more low level way to allocate resources, you can provide a file containing resource requests, e.g.
for Slurm, and tell UNICORE to use that via special “Job type” and “BSS file” elements in your job:

{
"Job type": "RAW",
"BSS file": "sbatch.request",

"Executable": "srun -ntasks=4 date",

"Imports": [
{
"From": "inline://dummy", "To": "sbatch.request",
"Data": [

"#!/bin/bash",
"#SBATCH --account=yourproject",
"#SBATCH --nodes=1",
"#SBATCH --output=stdout",
"#SBATCH --error=stderr",

]
}

]
}

For simplicity, this example contains the script directly in the job description via an “inline” data transfer.

Note that this only needs to contain resource requests, the actual execution part will be document by UNICORE.
UNICORE will then track this batch job as usual.

4.1. Introduction 19

UNICORE Docs

4.2 UNICORE Commandline Client

The UNICORE Commandline Client (UCC) is a client for UNICORE, supporting all of UNICORE’s features, such
as:

• Job submission and management

• Data access and management (upload, download, server-to-server copy, etc) using the UNICORE storage man-
agement functions and the available data transfer protocols

• Storage functions (ls, mkdir, ...) including creation of storage instances via storage factories

• Workflow execution using UNICORE’s own workflow description

and much more.

UCC Manual User Manual with detailed instructions and examples for using the UNICORE Commandline
Client.

Building the UCC Building the UNICORE Commandline Client distribution packages.

4.2.1 UCC Manual

4.2.1.1 Overview

The UNICORE Commandline Client (UCC) is a full-featured client for the UNICORE middleware. UCC has client
commands for all the UNICORE basic services and the UNICORE workflow system.

It offers the following functions

• Job submission and management

• Batch mode job submission and processing with many performance tuning options

• Data movement (upload, download, server-to-server copy, etc) using the UNICORE storage management func-
tions and available data transfer protocols

• Storage functions (ls, mkdir, ...) including creation of storage instances via storage factories

• Support for UNICORE workflow submission and management

• Support for the UNICORE metadata system

• Support for sharing UNICORE resources via ACLs

• Information about the available services is provided via the system-info command

• Various utilities like a shell mode, low-level REST API operations and others

• Extensibility through custom commands and the possibility to run scripts written in the Groovy programming
language

• Built-in help

For more information about UNICORE visit https://www.unicore.eu.

20 Chapter 4. User Documentation

https://www.unicore.eu

UNICORE Docs

4.2.1.2 Installation and configuration

4.2.1.2.1 Prerequisites

To run UCC, you need a Java runtime version 11 or later (OpenJDK preferred).

4.2.1.2.2 Download

You can get the UCC latest version from SourceForge UNICORE download page.

4.2.1.2.3 Installation and configuration

To install, unpack the distribution in a directory of your choice. It’s a good idea to add the bin/ directory to your PATH
variable,

$ export PATH=$PATH:<UCC_HOME>/bin

where UCC_HOME is the directory you installed UCC in.

Note: Windows only

Please do not install UCC into a directory containing spaces such as Program files.

Also avoid long path names, this can lead to errors due to the Windows limit on command line length.

Setting environment variables can be done (as administrator) using the Control panel → System → Extras panel.

Though you can specify many parameters on the commandline, it is easiest to use a config file, so that you do not have
to key in this information repeatedly.

4.2.1.2.4 Preferences file

UCC checks by default whether the file <userhome>/.ucc/preferences exists, and reads it.

A minimal example that specifies username, password and your preferred UNICORE registry URL would look as
follows:

registry=<your registry>

authentication-method=username
username=demouser
password=test123

truststore.type=directory
truststore.directoryLocations.1=<path to CA file(s)>

client.serverHostnameChecking=NONE

Please refer to Common options to UCC for a full description of available options.

4.2. UNICORE Commandline Client 21

https://openjdk.org/install/
https://sourceforge.net/projects/unicore/files/Clients/Commandline%20Client

UNICORE Docs

Note: If you are worried about security, and do not want specify the password: UCC will ask for it if it is not given in
the preferences or on the commandline.

Note: Windows only

The preferences are usually searched in the c:\Users\<user_name>\.ucc folder.

To create the .ucc folder, you might have to use the command prompt mkdir command.

When specifying paths in the preferences file, the backslash \ character needs to be written using an extra backslash
\\.

For example, if you are using a local UNICORE installation for testing, you could use

registry=https://localhost:8080/DEMO-SITE/rest/core/registries/default_registry

Tip: If you wish to change the default property file location, you can set a Java VM property in the UCC start script,
for example by editing the command that starts UCC

$ java -Ducc.preferences=<preferences location>

4.2.1.2.5 Logging

UCC writes some messages to the console, more if you choose the verbose mode (-v option). If you need real logging
(e.g. when using the batch mode), you can edit the <UCC_HOME>/conf/logging.properties file, which configures
the Log4J logging infrastructure used in UNICORE.

4.2.1.2.6 Installing UCC extensions

UCC can be extended with additional commands. It is enough to copy the libraries (.jar files) of the extension into a
directory that is scanned by UCC: in general these are the UCC lib and the ${HOME}/.ucc/lib directory.

4.2.1.2.7 Testing the installation

To test your UCC installation and to get information about the services available in the UNICORE system you’re
connecting to, do

$ ucc system-info -l -v

22 Chapter 4. User Documentation

https://logging.apache.org/log4j/2.x/manual/configuration.html

UNICORE Docs

4.2.1.3 Getting started with UCC

Assuming you have successfully installed UCC, this section shows how to get going quickly.

4.2.1.3.1 Getting help

Calling UCC with the -h option will show the available options. To get a list of available commands, type:

$ ucc -h

To get help on a specific command, type:

$ ucc <command> -h

See also Common options to UCC for a list of common options.

4.2.1.3.2 Connecting

First, contact UNICORE and make sure you have access to some target systems:

$ ucc connect

4.2.1.3.3 List available sites

Then, list the sites available to you using:

$ ucc list-sites

4.2.1.3.4 Running your first job

The UCC distribution contains samples that you can run. Let’s run the date.u sample. The -v switch prints more info
so you can see what’s going on.

$ ucc run -v <UCC_HOME>/samples/date.u

This will run date on a randomly chosen site, and retrieve the output. To run on a particular site, use the -s option to
specify a particular target system.

Note: Look for UCC samples in the /usr/share/doc/unicore/ucc/samples directory.

4.2. UNICORE Commandline Client 23

https://github.com/UNICORE-EU/commandline-client/tree/master/distribution/src/main/samples
https://github.com/UNICORE-EU/commandline-client/blob/master/distribution/src/main/samples/date.u

UNICORE Docs

4.2.1.3.5 Listing your jobs

The command

$ ucc list-jobs -l

will print a list of job URLs with their respective status (RUNNING, SUCCESSFUL, etc).

4.2.1.4 Common options to UCC

The following table lists the options understood by most UCC commands. Most commands have additional options.
You can always get a summary of all available options for a command by calling UCC with the -h or --help option,
for example,

$ ucc run --help

Since it is not possible to give all the required options on the commandline, it is mandatory to create a preferences file
containing e.g. your settings for keystore, registry, etc.

Table 4.1: Common options for the UCC
Option (short and long form) Description
-c,–configuration <Properties_file> Properties file containing your preferences. By default, a file $HOME/

.ucc/preferences is checked.
-k,–authentication-method <auth> Authentication method to use (default: USERNAME)
-o,–output <Output_dir> Directory for any output produced (default is the current directory)
-r,–registry <List_of_Registry_URLs> The comma-separated list of URLs of UNICORE registries
-v,–verbose Verbose mode
-h,–help Print help message
-y,–with-timing Timing mode

4.2.1.4.1 User preferences

If you have multiple user IDs or are a member of multiple Unix Groups on the target system, you may wish to control
the user attributes that are used when invoking UCC.

Here is a list of options related to user attributes:

Table 4.2: User attribute options
Option (short and long form) Description
-Z, –preference Select from your remote attributes (e.g. xlogin)

The preference option accepts multiple arguments of the form <name>:<value> where name:

Table 4.3: User attribute options
Name Description
uid Remote login
pgid Primary group ID
supgids Secondary group IDs (comma-separated)
role UNICORE role (user, admin, . . .)
vo virtual organisation

24 Chapter 4. User Documentation

UNICORE Docs

4.2.1.4.2 Configuration file

By default, UCC checks for the existence of a file <userhome>/.ucc/preferences and reads settings from there.
As shown above, you can use a different file by specifying it on the commandline using the -c option.

The configuration file can contain default settings for many commandline options, which are given in the form <option
name>=<value> where <option name> is the long form of the option. The property values may contain variables in
the form ${VAR_X}, which are automatically replaced with the environmental variable values with the same name. Ad-
ditionally a special variable ${UCC_CONFIG} is recognized and is replaced with the absolute path of your configuration
file.

The most important part of configuration is how UCC should authenticate you to the UNICORE server(s) and what
server(s) should be trusted.

An overview of the available authentication options can be retrieved using:

$ ucc help-auth

A minimal example for using the quickstart installation would be:

registry=https://localhost:8080/DEMO-SITE/services/Registry?res=default_registry

authentication-method=username
username=demouser
password=test123

truststore.type=directory
truststore.directoryLocations.1=<path to CA file(s)>

Important: To protect your passwords, you should make the file non-readable by others, for example on Unix using
a command such as chmod 600 preferences.

Note: If required passwords are not given in the properties file, they will be queried interactively.

4.2.1.4.3 Username and password authentication

To authenticate with username and password, set the following:

authentication-method=username
username=<your remote username>
password=<your remote password>

4.2. UNICORE Commandline Client 25

UNICORE Docs

4.2.1.4.4 Support for token based authentication

UCC has three different options for using token-based authentication:

• via oidc-agent

• directly contact an OIDC server as an OIDC client (requires client ID and secret)

• specify the token directly as a config property

OIDC-Agent

UCC supports the oidc-agent tool that allows to interact with common OIDC servers to retrieve new access tokens.

To configure oidc-agent, UCC supports the following properties:

Table 4.4: Options for oidc-agent
Property name Type Default value / manda-

tory
Description

oidc-agent.account string mandatory Account short name.

oidc-agent.lifetime integer >= 1 Minimum lifetime of the issued access
token.

oidc-agent.scope string OpenID scope(s) to request.

Your config file would require at least:

authentication-method=oidc-agent
oidc-agent.account=<oidc-agent account to be used>

OIDC Server

This is a low-level approach that requires the details on how to act as an OIDC client, you’ll need at least an OIDC
token endpoint, client ID and secret.

26 Chapter 4. User Documentation

https://github.com/indigo-dc/oidc-agent

UNICORE Docs

Table 4.5: Options for oidc-server
Property name Type Default value / manda-

tory
Description

oidc.authentication [BASIC, POST] BASIC How to authenticate (i.e. send client
id/secret) to the OIDC server (BASIC
or POST).

oidc.clientID string Client ID for authenticating to the
OIDC server.

oidc.clientSecret string Client secret for authenticating to the
OIDC server.

oidc.endpoint string mandatory The OIDC server endpoint for request-
ing a token

oidc.grantType string client_credentials Grant type to request.
oidc.otp string Additional one-time password for two-

factor authentication. Set this to
‘QUERY’ to query it interactively.

oidc.password string Password used to log in. It is suggested
not to use this option for security rea-
sons. If not given in configuration, it
will be asked interactively.

oidc.refreshInterval integer number 300 Interval (seconds) before refreshing
the token.

oidc.refreshTokenFile string (internal) Filename for storing the re-
fresh token between UCC invocations.

oidc.request_key_for_otpstring otp (internal) How to send the OTP value
to the server.

oidc.username string Username used to log in. If not given
in configuration, it will be asked inter-
actively.

authentication-method=oidc-server
oidc.endpoint=<oidc server token endpoint>
oidc.username=...
oidc.password=...

UCC also supports sending an OTP (one-time password) to Keycloak. To enable, add

oidc.otp=QUERY

to your config. The OTP token is queried from the command-line (the OTP value can also be placed verbatim in the
preferences as oidc.otp=your_otp_value).

UCC stores the refresh token (if any) and tries to use it, before using the username/password again, also accross UCC
invocations. (The token is stored in a file “$HOME/.ucc/refresh-tokens”, this default can be changed via a config
variable)

4.2. UNICORE Commandline Client 27

UNICORE Docs

Bearer token in config

Last not least, if you have a Bearer token via some other means, you can directly put the token into your config file:

authentication-method=bearer-token
token=...

4.2.1.4.5 Certificate-based authentication

For UNICORE installations that support (or even require) client certficates for authentication, set:

authentication-method=X509

credential.path=<your keystore>
credential.password=XXXXXXX

4.2.1.4.6 Truststore options

In most cases you only need a truststore directory containing trusted certificates:

truststore.type=directory
truststore.directoryLocations.1=/trust/dir/*.pem

A full list of options related to truststore management is available in the following table:

28 Chapter 4. User Documentation

UNICORE Docs

Table 4.6: Truststore properties
Property name Type Default value

/ mandatory
Description

trust-
store.allowProxy

[ALLOW, DENY] ALLOW Controls whether proxy certificates are supported.

truststore.type [keystore, openssl,
directory] manda-

tory

The truststore type.

trust-
store.updateInterval

integer number 600 How often the truststore should be reloaded, in
seconds. Set to negative value to disable refresh-
ing at runtime.(runtime updateable)

trust-
store.directoryConnectionTimeout

integer number 15 Connection timeout for fetching the remote CA
certificates in seconds.

trust-
store.directoryDiskCachePath

filesystem path Directory where CA certificates should be cached,
after downloading them from a remote source.
Can be left undefined if no disk cache should be
used. Note that directory should be secured, i.e.
normal users should not be allowed to write to it.

trust-
store.directoryEncoding

[PEM, DER] PEM For directory truststore controls whether certifi-
cates are encoded in PEM or DER. Note that the
PEM file can contain arbitrary number of concate-
nated, PEM-encoded certificates.

trust-
store.directoryLocations.*

list of properties
with a common
prefix

List of CA certificates locations. Can con-
tain URLs, local files and wildcard expres-
sions.(runtime updateable)

trust-
store.keystoreFormat

string The keystore type (jks, pkcs12) in case of trust-
store of keystore type.

trust-
store.keystorePassword

string The password of the keystore type truststore.

trust-
store.keystorePath

string The keystore path in case of truststore of keystore
type.

trust-
store.opensslNewStoreFormat

[true, false] false In case of openssl truststore, specifies whether the
trust store is in openssl 1.0.0+ format (true) or
older openssl 0.x format (false)

trust-
store.opensslNsMode

[GLOBUS_EUGRIDPMA,
EU-
GRIDPMA_GLOBUS,
GLOBUS, EU-
GRIDPMA,
GLOBUS_EUGRIDPMA_REQUIRE,
EU-
GRIDPMA_GLOBUS_REQUIRE,
GLOBUS_REQUIRE,
EU-
GRIDPMA_REQUIRE,
EU-
GRIDPMA_AND_GLOBUS,
EU-
GRIDPMA_AND_GLOBUS_REQUIRE,
IGNORE]

EU-
GRIDPMA_GLOBUS

In case of openssl truststore, controls which (and
in which order) namespace checking rules should
be applied. The ‘REQUIRE’ settings will cause
that all configured namespace definitions files
must be present for each trusted CA certificate
(otherwise checking will fail). The ‘AND’ settings
will cause to check both existing namespace files.
Otherwise the first found is checked (in the order
defined by the property).

trust-
store.opensslPath

filesystem path /etc/grid-
security/certificates

Directory to be used for opeenssl truststore.

trust-
store.crlConnectionTimeout

integer number 15 Connection timeout for fetching the remote CRLs
in seconds (not used for Openssl truststores).

trust-
store.crlDiskCachePath

filesystem path Directory where CRLs should be cached, after
downloading them from remote source. Can be
left undefined if no disk cache should be used.
Note that directory should be secured, i.e. normal
users should not be allowed to write to it. Not used
for Openssl truststores.

trust-
store.crlLocations.*

list of properties
with a common
prefix

List of CRLs locations. Can contain URLs, lo-
cal files and wildcard expressions. Not used for
Openssl truststores.(runtime updateable)

truststore.crlMode [REQUIRE,
IF_VALID, IG-
NORE]

IF_VALID General CRL handling mode. The IF_VALID set-
ting turns on CRL checking only in case the CRL
is present.

trust-
store.crlUpdateInterval

integer number 600 How often CRLs should be updated, in seconds.
Set to negative value to disable refreshing at run-
time.(runtime updateable)

trust-
store.ocspCacheTtl

integer number 3600 For how long the OCSP responses should be lo-
cally cached in seconds (this is a maximum value,
responses won’t be cached after expiration)

trust-
store.ocspDiskCache

filesystem path If this property is defined then OCSP responses
will be cached on disk in the defined folder.

trust-
store.ocspLocalResponders.<NUMBER>

list of properties
with a common
prefix

Optional list of local OCSP responders

truststore.ocspMode [REQUIRE,
IF_AVAILABLE,
IGNORE]

IF_AVAILABLE General OCSP ckecking mode. REQUIRE should
not be used unless it is guaranteed that for all cer-
tificates an OCSP responder is defined.

trust-
store.ocspTimeout

integer number 10000 Timeout for OCSP connections in miliseconds.

trust-
store.revocationOrder

[CRL_OCSP,
OCSP_CRL]

OCSP_CRL Controls overal revocation sources order

trust-
store.revocationUseAll

[true, false] false Controls whether all defined revocation sources
should be always checked, even if the first one al-
ready confirmed that a checked certificate is not
revoked.

4.2. UNICORE Commandline Client 29

UNICORE Docs

4.2.1.4.7 Truststore examples

Here are some examples for commonly used trust store configurations.

Most commonly used is a directory (with a minimal set of options):

truststore.type=directory
truststore.directoryLocations.1=/trust/dir/*.pem

OpenSSL trust store:

truststore.type=openssl
truststore.opensslPath=/etc/grid-security/
truststore.opensslNsMode=EUGRIDPMA_GLOBUS_REQUIRE
truststore.updateInterval=1200
truststore.crlMode=IF_VALID

Java keystore used as a trust store:

truststore.type=keystore
truststore.keystorePath=/some/dir/truststore.jks
truststore.keystoreFormat=JKS
truststore.keystorePassword=xxxxxx

4.2.1.4.8 Client options

The configuration file may also contain low-level options, for example, if you need to specify connection timeouts, http
proxies, etc.

30 Chapter 4. User Documentation

UNICORE Docs

Table 4.7: Client options
Property name Type Default value

/ mandatory
Description

client.digitalSigningEnabled[true, false] true Controls whether signing of key web service re-
quests should be performed.

client.httpAuthnEnabled[true, false] false Whether HTTP basic authentication should be
used.

client.httpPassword string empty string Password for use with HTTP basic authentication
(if enabled).

client.httpUser string empty string Username for use with HTTP basic authentication
(if enabled).

client.maxWsCallRetriesinteger number 3 Controls how many times the client should try to
call a failing web service. Note that only the tran-
sient failure reasons cause the retry. Note that
value of 0 enables unlimited number of retries,
while value of 1 means that only one call is tried.

client.messageLogging [true, false] false Controls whether messages should be logged (at
INFO level).

client.securitySessions [true, false] true Controls whether security sessions should be en-
abled.

client.serverHostnameChecking[NONE, WARN,
FAIL]

WARN Controls whether server’s hostname should be
checked for matching its certificate subject. This
verification prevents man-in-the-middle attacks. If
enabled WARN will only print warning in log,
FAIL will close the connection.

client.sslAuthnEnabled[true, false] true Controls whether SSL authentication of the client
should be performed.

client.sslEnabled [true, false] true Controls whether the SSL/TLS connection mode
is enabled.

client.wsCallRetryDelayinteger number 10000 Amount of milliseconds to wait before retry of a
failed web service call.

client.http.allow-
chunking

[true, false] true If set to false, then the client will not use HTTP
1.1 data chunking.

client.http.connection-
close

[true, false] false If set to true then the client will send connection
close header, so the server will close the socket.

client.http.connection.timeoutinteger number 20000 Timeout for the connection establishing (ms)
client.http.maxPerRouteinteger number 6 How many connections per host can be made.

Note: this is a limit for a single client object in-
stance.

client.http.maxRedirectsinteger number 3 Maximum number of allowed HTTP redirects.
client.http.maxTotal integer number 20 How many connections in total can be made. Note:

this is a limit for a single client object instance.
client.http.socket.timeoutinteger number 0 Socket timeout (ms)
client.http.nonProxyHostsstring Space (single) separated list of hosts, for which the

HTTP proxy should not be used.
client.http.proxy.passwordstring Relevant only when using HTTP proxy: defines

password for authentication to the proxy.
client.http.proxy.user string Relevant only when using HTTP proxy: defines

username for authentication to the proxy.
client.http.proxyHost string If set then the HTTP proxy will be used, with this

hostname.
client.http.proxyPort integer number HTTP proxy port. If not defined then system prop-

erty is consulted, and as a final fallback 80 is used.
client.http.proxyType string HTTP HTTP proxy type: HTTP or SOCKS.

4.2. UNICORE Commandline Client 31

UNICORE Docs

4.2.1.4.9 Other options

The following table lists other options, that are more rarely used:

Table 4.8: Other options for the UCC
Property name Description
blacklist Comma separated patterns for sites / URLs to ignore
contact-registry Do not attempt to contact the registry, even if one is configured

4.2.1.5 Running jobs

4.2.1.5.1 Introduction

The UCC can run jobs specified in the JSON job description format that is used by the UNICORE REST API , plus a
few extensions related to handling of local files, submission options, etc. See Job description format for all the details.

In the following it is assumed that you have UCC installed Installation and configuration and tried some examples
Getting started with UCC.

For example, assume the file myjob.u looks as follows:

{
"ApplicationName": "Date",
"ApplicationVersion": "1.0"

}

To run this through UCC, issue the following command:

$ ucc run myjob.u

This will submit the job, wait for completion, download the stdout and stderr files, and place them in your default output
directory. The run command has a number of options, to see all the possibilities use the built-in help:

$ ucc run -h

Controlling the output location and file names

Output files will be placed in the directory given by the -o option, if not given, the current directory is used. Also,
file names will be put into a subdirectory named as the job id, to prevent accidental overwriting of existing files. This
behaviour can be changed using the -b option. When -b is given on the command line, no subdirectory will be created.

32 Chapter 4. User Documentation

UNICORE Docs

Specifying the site

In the example above, a random site will be chosen to execute the job. To control it, you can use the -s option. This
will accept the name of a target system. The target systems available to you can be listed by

$ ucc list-sites

Accessing a job’s working directory

Using the UCC’s data management functions, the job working directory can be accessed at any time after job submis-
sion. Please see section Data management functions for details.

4.2.1.5.2 Options overview

The following options are available when running jobs (see also the general options overview in Common options to
UCC):

Table 4.9: Job submission options for UCC
Option (Short and long form) Description
-a,–asynchronous Run asynchronously
-b,–brief Do not create a sub-directory for output files
-B,–broker Select the type of resource broker to use (see run -h for a list)
-s,–sitename <SITE> Site where the job shall be run
-S,–schedule <Time> Schedule the submission of the job at the given time
-o,–output <Output_dir> Directory for any output produced (default is the current directory)

4.2.1.5.3 Resource selection

In general the user selects the execution site.

If no site is specified upon submission, UCC will select a matching site, where the requirements (resources, applica-
tions) are met.

In case there are other types of brokers available, they can be selected using the -B or --broker option.

• LOCAL (default): brokering is done by UCC itself

To see if other brokers exist, execute ucc run -h, the available options will be listed in the help for the -B option.

4.2.1.5.4 Processing jobs asynchronously

In case of long-running jobs, you will want to run the job asynchronously, i.e. just submit the job, stage in any files and
start it, in order to get the results later.

4.2. UNICORE Commandline Client 33

UNICORE Docs

Asynchronous submission

Use the -a flag when submitting a job:

$ ucc run -a <job file>

This will submit the job, stage-in any local files, start the job and exit. A job file will be written that contains information
about the job endpoint and any exports that should be performed once the job has finished. You can use this file later
with the get-output and job-status commands.

Get the status of particular jobs

The command

$ ucc job-status <job_file_or_url> <job_file_or_url_2> ...

will retrieve the status of the given jobs. If not given on the command line, a job URL will be read from the console.

The arguments can be either a job URL, or the name of a job file (as written by the run -a command).

Download results

To get stdout and stderr as well as other files marked for export, do:

$ ucc get-output -o <outdir> <job_file_or_url> <job_file_or_url_2> ...

Here, the option -o specifies the directory where to put the output, by default the current directory is used. As before,
a job address can also be read from the console.

Referencing a job by its URL (endpoint address)

In case you want to check on a job not submitted through UCC, you can refer to a job by its URL. The list-jobs command
will produce a list of all job URLs that you can access.

Note that in this case UCC will only retrieve stdout and stderr files. To download other result files, you’ll have to use
the data movement functions described in Data management functions.

Scheduling job submission to the batch system

Sometimes a user wishes to control the time when a job is submitted to the batch queue, for example, because he/she
knows that a certain queue will be empty at that time.

To schedule a job, you can either use the -S option to the ucc run command:

$ ucc run -S "12:24" ...

Alternatively, you can specify the start time in your job file using the Not before keyword:

{
"Not before": "12:30",

}

34 Chapter 4. User Documentation

UNICORE Docs

In both cases, the specified start time can be given in the brief “HH:mm” (hours and minutes) format shown above, or
in the full ISO 8601 format including year, date, time and time zone:

{
"Not before": "2011-12-24T12:30:00+0200",
}

4.2.1.5.5 Executing a command

If you just want to execute a simple command remotely (i.e. without data staging, resource specifications etc), you can
use the exec command.

This will run the given command remotely (similarly to ssh), and print the output to the console. You can specify the
site with the -s option. If you do not specify the site, a random site will be chosen.

UNICORE will run the command on the login node, it will not be submitted to the batch system.

For example, try

$ ucc exec /bin/date

To safely pass arguments to the executable, use “–” to end the UCC part of the command line, for example

$ ucc exec -- date --rfc-email

4.2.1.6 Job description format

UCC uses the JSON Job description format that is used by the UNICORE REST API , adding support for handling
local files.

Several complete job samples can be found in the samples directory of the distribution. On Linux, check also the
/usr/share/unicore/ucc/samples directory.

To view an example job showing most of the available options, run:

$ ucc run -H

(most of the options shown are not mandatory, of course).

4.2.1.6.1 UCC extensions to the UNICORE job description format

It is often the case that your job requires files from your local workstation, or you want UCC to download result files
once the job has finished.

UCC achieves this by allowing paths to local files in the To and/or From directives of the data staging part(s) in your
job.

Local files can be given as an absolute or relative path; in the latter case the configured output directory will be used
as base directory.

4.2. UNICORE Commandline Client 35

https://github.com/UNICORE-EU/commandline-client/tree/master/distribution/src/main/samples

UNICORE Docs

Importing local files into the job workspace

To import files from your local computer, you can use the usual Imports keyword, with a path as the From argument.

You can of course mix local and remote files. This example shows some of the possibilities:

{

"Imports": [

#
import a local file from the client machine
into the job workspace
#

{ "From": "/work/data/fileName", "To": "fileName" },

#
import a set of local files from the client machine
into the job workspace
#

{ "From": "/work/data/pdf/*.pdf", "To": "/" },

#
import a remote file from a UNICORE storage using the UFTP protocol
#

{ "From": "UFTP:https://gw:8080/DEMO-SITE/rest/core/storages/Home/files/testfile
→˓",

"To": "testfile" },

create a symlink from a file on the compute machine to the job workspace

{ "From": "link:/work/data/testfile", "To": "linked-file" },

copy a file on the compute machine to the job workspace

{ "From": "file:/work/data/testfile", "To": "copied-file" },

],

}

If for some reason an import fails, but you want the job to run anyway, there is a flag FailOnError that can be set to
false:

"Imports": [

{ "From": "/work/data/fileName",
"To": "fileName",
"FailOnError": "false"

},

(continues on next page)

36 Chapter 4. User Documentation

UNICORE Docs

(continued from previous page)

],

Note: UCC supports simple wild cards (* and ?) for importing and exporting files.

Exporting result files from the job workspace

To export files from the job’s working directory to your local machine, use the normal Exports keyword, with a file
path as the To argument. Here is an example Exports section that specifies two exports:

{
"Exports": [

this exports all png files to a local directory

{ "From": "*.png", "To": "/home/me/images/" },

this exports a single file to a to local directory
failure of this data transfer will be ignored

{ "From": "error.log",
"To": "/home/me/logs/error.log",
"FailOnError": "false" },

this exports to a UNICORE storage

{ "From": "stdout",
"To": "https://gw:8080/DEMO-SITE/rest/core/storages/Home/files/results/myjob/stdout

→˓"
},

]
}

As a special case, UCC also supports downloading files from other UNICORE storages (after the job has finished),
using the Exports keyword:

{
"Exports": [

this exports a file from a UNICORE storage

{ "From": "https://gw:8080/DEMO-SITE/rest/core/storages/Work/files/somefile",
"To": "/home/me/somefile"

},
]

}

4.2. UNICORE Commandline Client 37

UNICORE Docs

4.2.1.7 Data management functions

UCC offers access to all the data management functions in UNICORE. You can upload or download data from a remote
server, initiate a server-to-server transfer, create directories and so on.

4.2.1.7.1 Specifying remote locations

Remote locations are specified via URIs that includes protocol, storage server (host/port), site name, and filename. For
example,

BFT:https://mygateway:8080/SITE/rest/core/storages/HOME/files/my_file

specifies a file named /my_file on the storage instance https://mygateway:8080/SITE/rest/core/storages/HOME, using
the BFT protocol.

Paths are always relative to the storage root, not the root of the actual file system.

The protocol is optional, and will default to BFT if not given.

4.2.1.7.2 Data movement

cp

The cp command is a generic command for copying source file(s) to a target destination, where source and target can
be remote locations or files on the local machine. Wild card characters * and ? are supported.

Examples for client-server transfers:

$ ucc cp data/*.pdf https://server/rest/core/storages/SHARE/files/pdfs
$ ucc cp https://server/rest/core/storages/SHARE/files/pdfs .

The -R option allows to choose whether subdirectories are to be copied too.

The -X option allows to resume a previous transfer. Missing data will be appended to an existing target file (if the
chosen protocol supports it).

Examples for server-server transfer:

$ ucc cp https://server/rest/core/storages/SHARE/files/*.pdf \
https://otherserver/rest/core/storages/WORK/data/

For server-to-server transfers, the cp command supports several additional options.

The -S option allows to schedule a transfer for a certain time. For example,

$ ucc cp -S "23:00" ...

The format is simply HH:mm (hours and minutes). Alternatively, you can give the time in the full ISO 8601 format
including year, date, time and time zone:

$ ucc cp -S "2011-12-24T12:30:00+0200" ...

Another useful option is -a which will execute the server-server transfer asynchronously, i.e. the client will not wait
for the transfer to finish.

38 Chapter 4. User Documentation

UNICORE Docs

copy-file-status

This will print the status of the given data transfer. As argument, it expects a file name containing the transfer reference,
or directly the reference.

Example (for Unix) which captures the reference into a shell variable:

$ export ID=$(ucc cp -a ...
$ ucc copy-file-status $ID

Specifying the file transfer protocol

To use a different protocol from the default BFT, you can use the -P option to specify your preferred protocol. UCC
will try to match them with the capabilities of the storage and use the first match. Your preferred protocol can also be
listed in your preferences file using the protocols key:

protocols=UFTP

Note: If necessary, you can specify additional filetransfer options in your preferences file as well. For example, to use
the UFTP protocol you may need to specify the client host address and the number of parallel streams explicitely:

uftp.client.host=your_client_ip_address
uftp.streams=2
encrypt data (at the cost of performance)
uftp.encryption=true
compress data
uftp.compression=true

Use the special value all to enable all available client IP addresses for UFTP.

uftp.client.host=all

You can also override the UFTP server host, which can be useful in case the UFTP server is accessible via multiple
network interfaces:

uftp.server.host=myhost.com

UCC will try to use reasonable defaults for any missing parameters.

4.2.1.7.3 General commands

mkdir

This will create a directory (including required parent directories) remotely.

Example:

$ ucc mkdir https://mygateway:8080/SITE/rest/core/storages/HOME/files/pdfs

4.2. UNICORE Commandline Client 39

UNICORE Docs

rm

This will remove a file or directory remotely. By default, UCC will ask for a confirmation. Use the --quiet or -q
option to disable this confirmation (e.g. when using this command in scripts).

Example:

$ ucc rm https://mygateway:8080/SITE/rest/core/storages/HOME/files/pdfs

rename

This will rename/move a remote file/directory on the same storage.

Example:

$ ucc rename https://mygateway:8080/SITE/rest/core/storages/HOME/files/data/foo1.pdf /
→˓files/data/foo2.pdf

will rename the file foo1.pdf to foo2.pdf.

stat

This command shows full information on a certain file or directory. Add the -m flag to also print user-defined metadata.

Example:

$ ucc stat -m https://mygateway:8080/SITE/rest/core/storages/HOME/files/foo.txt

4.2.1.7.4 Finding data

ls

This will list a remote directory. Useful options are: -l (detailed output), -H (human-friendly) and -R (recurse).

Example:

$ ucc ls -l -H https://mygateway:8080/SITE/rest/core/storages/HOME/

If the storage supports metadata, you can get the metadata of a single file using ls -l -m:

$ ucc ls -l -m https://mygateway:8080/SITE/rest/core/storages/HOME/.bashrc

40 Chapter 4. User Documentation

UNICORE Docs

4.2.1.7.5 Using the StorageFactory service

UNICORE sites may allow users to dynamically create storage resources, which even can be linked to special back-end
systems like Apache HDFS, iRODS, or cloud storage like Amazon S3.

You can find out if there are sites supporting this StorageFactory service either by running the system-info -l
command, or better using

$ ucc create-storage -i

This will list the available StorageFactory services and also show which types of storage are supported and how much
space is left on each of them.

UCC supports creating storages via the create-storage command. The simple

$ ucc create-storage

will create a new storage resource using the default storage type at some site.

Usually you want to control at least where the storage is created. Additionally, the type of storage and some parameters
can be passed to UCC.

As an example, creating a storage of type S3 would look like this:

$ ucc create-storage -t S3 accessKey=... secretKey=...

You can also read parameters from a file. Say you have your S3 keys in a file s3.properties, then you can use the
following syntax:

$ ucc create-storage -t S3 @s3.properties

You can also mix this with the normal key=value syntax, or mix it like this:

$ ucc create-storage -t S3 accessKey=@s3.accessKey secretKey=@s3.secretKey

The last version key=@file causes just the value to be read from the named file.

4.2.1.8 Metadata management functions

UCC offers a simple interface to access the metadata management service in UNICORE.

4.2.1.8.1 Basics

The metadata functions are all accessed via a single UCC command metadata. The actual operation to be performed
is given with the -C (i.e. command) option.

The storage to be operated upon is given using the -s option.

In addition to the URL, the name of the target file on the storage is required.

Metadata is represented in JSON format. The metadata operations usually read metadata from a file (or write results
to a file), which is specified using the -f option.

In the following examples, <STORAGE> denotes the URL of a storage capable of handling metadata.

4.2. UNICORE Commandline Client 41

UNICORE Docs

4.2.1.8.2 Available commands

Creating metadata

To create metadata, a file in JSON format is required containing key-value pairs. For example, edit the file meta.json
to contain:

{
"foo": "bar"

}

Say we have a file test on our storage, then you can create metadata as follows:

$ ucc metadata -C create -f meta.json -s <STORAGE> /test

If you now look at the file with ls -l -m,

$ ucc ls -l -m <STORAGE>/test

you should get something like this:

-rw- 3344 2011-06-27 22:32 /test
{
"foo": "bar",
"resourceName": "/test"

}

Reading metadata

Apart from the ls -l -m used above, there is also an explicit read command, which can write the metadata to a file
as well:

$ ucc metadata -C read -s <STORAGE> /test -f out.json

The -f option is optional.

Updating metadata

Using update, the given metadata is merged with any existing metadata. Say we have a file x.json containing:

{
x: y
}

We can append this to the existing metadata:

$ ucc metadata -C update -s <STORAGE> /test -f x.json

Check that the metadata has indeed been appended.

42 Chapter 4. User Documentation

UNICORE Docs

Deleting metadata

Explicitely deleting is also possible:

$ ucc metadata -C delete -s <STORAGE> /test

Check that the metadata has indeed been deleted.

Searching

Searching requires a search string (according to the rules of Apache Lucene), and is triggered by the search command:

$ ucc metadata -C search -q "foo" -s <STORAGE> /

Triggering metadata extraction

To trigger the extraction of metadata on the server, use the start-extract command:

$ ucc metadata -C start-extract -s <STORAGE> /

In this case the / denotes the base path from which to start the extraction process.

4.2.1.9 Workflows

4.2.1.9.1 Introduction

UCC supports the UNICORE Workflow service and allows to submit workflows and manage them.

The workflows are executed server-side, and UCC is used only for submitting, managing data and getting results. UCC
also provides helper features for dealing with the workflows’ input/output data and parametrised workflow templates.

Note: Version 8.x of the Workflow service has changed a lot, and existing 7.x XML workflows will need to be converted
/ refactored.

4.2.1.9.2 Command overview

The following commands are provided:

• workflow-submit: submit a workflow file

• workflow-control: abort or resume a running workflow

• list-workflows: list information about workflows

More details and examples follow below.

4.2. UNICORE Commandline Client 43

UNICORE Docs

4.2.1.9.3 Basic use

To check the availability of the Workflow service in the configured registry, issue the following command:

$ ucc system-info -l

This should show at least an accessible Workflow service.

The distribution contains some example workflow files in the samples/workflows directory that you can edit and
submit.

$ ucc workflow-submit yourworkflow.json

which will submit the workflow and print the address of the workflow to standard output.

To get the workflow status:

$ ucc list-workflows <workflow_address>

To list all your workflows, you can use the list-workflows command without an explicit workflow address:

$ ucc list-workflows -l

4.2.1.9.4 Workflow description format

The JSON format used by that the Workflow service can be found here.

4.2.1.9.5 Managing workflow data

Importing local data for use by a workflow

If you have local files that need to be imported before starting the workflow, you can use a normal UCC job file that
contains only an Imports section:

{
"Imports":
[
{ "From": "local_file_1", "To": "wf:workflow_file_name_1", },
{ "From": "local_file_2", "To": "wf:workflow_file_name_2", },

...
],
}

UCC will upload the local files to a remote storage (which you can specify) and automatically register them with the
workflow upon submission.

Your workflow JSON can then reference them as wf:... in the workflow activities.

You can also manually register files by adding in inputs section to your workflow JSON.

{
"inputs": {
"wf:infile1" : "remote_url_1",

(continues on next page)

44 Chapter 4. User Documentation

UNICORE Docs

(continued from previous page)

"wf:infile2" : "remote_url_2",
},
}

Workflow templates

If the workflows contains a Template parameters section, the corresponding replacement will be done by reading
parameter values from the .u file. These so-called workflow templates can be a very simple and safe way to make
adjustments in complex workflows before submission. As an example, consider the following workflow:

{
"Template parameters": {

"SLEEPTIME": {
"type" : "INTEGER",
"default": "10",

}
},

"activities" : [
{

"id": "sleep1",
"job": {

"Executable": "sleep",
"Arguments": ["${SLEEPTIME}"],

},
},

],
}

This introduces a parameter SLEEPTIME with default value 10.

When the workflow is submitted, you can specify a JSON file with the -u option, which will be checked for a parameter
named SLEEPTIME

{
"SLEEPTIME": "1",

}

and if present, the value will be replaced in the workflow.

4.2.1.9.6 Resuming a held workflow

A workflow in status HELD can be resumed using the workflow-control resume command. If the workflow has vari-
ables/parameters, updated values can be sent with the resume command.

4.2. UNICORE Commandline Client 45

UNICORE Docs

4.2.1.10 Batch processing

The batch command allows you to run many jobs without having to start UCC each time. You can control how many
jobs should go to which site. This allows efficient job processing, while putting some load on the client machine. If
you need to take the client offline, you should consider using the workflow system instead, which also allows efficient
high-throughput processing.

Assume you have a bunch of jobs in UCC’s job description format stored in a directory jobs. The output should go to
a directory out. You can run them all through UCC using a single invocation as follows:

$ ucc batch -i jobs -o out

As job files, UCC will accept files ending in .u.

4.2.1.10.1 Options

You can run in follow mode, where UCC will watch the input directory, and will process new files as they arrive:

$ ucc batch -f -i jobs -o out

4.2.1.10.2 Performance tuning options

Getting the most performance out of UCC and the UNICORE installation can be a challenging task. Sending too many
jobs to a site might decrease throughput, sometimes the client machine can be the limiting factor, etc.

You should experiment a bit to get the best performance for your specific setup. UCC has many options available for
tuning. Here is an overview:

Table 4.10: Tuning options for the UCC batch mode
Option (short and long form) Description
-K,–keep Do not delete finished jobs on the server. By default, finished jobs are destroyed.
-m,–max <MaxRunningJobs> Limit on jobs submitted by UCC at one time (default: 100)
-t,–threads <NumThreads> Number of threads to be used for processing (default: 4)
-u,–update <UpdateInterval> Minimum time in milliseconds between status requests on a single job (Default:

1000)
-R,–no-resource-check Do not check if the necessary application is available on the target system (will

increase performance a bit)
-X,–no-fetch-outcome Do not fetch standard output and error
-S,–submit-only Only submit the jobs, do not wait for them to finish
-M,–max-new-jobs Limit the number of job submissions (default: 100)
-s,–sitename Specify which site to use
-W,–site-weights Specify a file containing site weights

46 Chapter 4. User Documentation

UNICORE Docs

4.2.1.10.3 Resource selection in batch mode

By default, the UCC batch mode will select a random site for running a job. You can modify the selection in different
ways:

• using the -s option or a Site: <sitename>, entry in the job file, you can specify the site directly

• use the -W option to specify a file containing site weights

Say you have two sites where one site is a big cluster and the other a small cluster. To send more jobs to the big cluster,
you can use the site weights file:

#example site weights file for use with "ucc batch -W ..."

BIG-CLUSTER = 100
SMALL-CLUSTER = 10

#send no jobs to this site
BAD-CLUSTER = 0

set default weight (for any sites not specified here)
UCC_DEFAULT_SITE_WEIGHT = 10

This would tell UCC to send 10 times more jobs to the BIG-CLUSTER site, and send no jobs to the BAD-CLUSTER.
All other sites would get weight 10, i.e. the same as SMALL-CLUSTER.

4.2.1.11 The UCC shell

If you want to run a larger number of UCC commands, the overhead of starting the Java VM or checking the registry may
become annoying. For this scenario, UCC offers a shell that allows the user to enter UCC commands interactively.

It is started by

$ ucc shell <options>

If you want to process a list of commands from a file instead of typing them, you can start the shell like this:

$ ucc shell -f commandsfile

or on Unix you can use the redirection features:

$ ucc shell < commandsfile

4.2.1.11.1 Changing property settings

To change a property setting in shell mode, you can use the set command. Without additional arguments, current
properties are listed:

ucc> set registry=https://... output=/tmp ...

To set one or more properties, add space separated key=value strings:

ucc> set output=/work registry=https://....

4.2. UNICORE Commandline Client 47

UNICORE Docs

You can also clear a property (set it to null) by using unset:

ucc> unset registry

Variables referenced via $var_name or ${var_name} will be replaced in commands. You can use this to make com-
mands shorter and more readable. It’s also possible and useful to pre-set certain things in your preferences file.

For example,

ucc> set S1=https://myserver/my_site/rest/core/storages/HOME
ucc> ls -l $S1

A special variable $_ exists that is set by various commands to the last thing that was created or accessed.

For example,

ucc> run -a date.u
ucc> job-status $_

4.2.1.11.2 Running an external command

You can run an external command via the system (or simply !) shell command. For example,

ucc> system vi job.u

or simply

ucc> ! cat job.u

4.2.1.11.3 Exiting the shell

To exit, type exit or press Control-D.

4.2.1.12 Sharing resources

Accessing UNICORE resources (jobs, storages, . . .) is usually only possible when you own the resource or when there
are special server-side policies in place that allow you access.

UNICORE supports ACLs on a per-service instance basis. This means, that you can give other users access to your
jobs, storages, etc.

For example, you might want to allow others to check your jobs’ status, or even allow them to abort jobs.

Note that to access actual files the permissions on file system level still need to match. Usually this is achieved by using
Unix groups.

48 Chapter 4. User Documentation

UNICORE Docs

4.2.1.12.1 Editing ACLs

The ACLs are managed via the share command. Use the basic

$ ucc share <URL>

to share the current ACL for the given resource, where URL is the full URL of the resource, e.g.

$ ucc share https://localhost:8080/DEMO-SITE/rest/core/storages/HOME

To add an ACL entry use:

$ ucc share ACE1 ACE2 ... <URL>

where ACE is an access control entry expressed in a simple format:

[read|modify]:[DN|VO|GROUP|UID]:[value]

For example, to give modify permission to a user whose UNIX user id on the target system is test, you would use:

$ ucc share modify:UID:test <URL>

To delete entries use the -d option:

$ ucc share -d modify:UID:test <URL>

To delete all entries use the -b option:

$ ucc share -b <URL>

4.2.1.12.2 Permission levels

The permissions controlled by ACLs are as follows:

• read: access resource properties

• modify: perform actions e.g. job submission or creating a file export

Only the owner of a resource can edit the ACL or destroy the resource.

4.2.1.13 Port forwarding / tunneling

Starting with UNICORE 9.1.0, it is possible to open a tunnel (TCP socket connection) from the client to a service
running on the HPC cluster. The service can run on a login node or even on a compute node.

Since this mechanism uses only the established UNICORE communication channels, it will work in any situation,
unhindered by firewalls.

Traffic is forwarded from the client through the UNICORE HTTPS stack down to the cluster login node, where a (TSI)
process is in charge of connecting to the backend service and forwarding data back through the UNICORE stack to the
client. So there is chain of connections forwarding data through the following stack

• Client application

• Client-side listener (e.g. UCC)

4.2. UNICORE Commandline Client 49

UNICORE Docs

• Gateway

• UNICORE/X

• Server-side listener (TSI process) on the login node

• Service

(in both directions).

That is quite a number of hops, so latency and throughput will be limited accordingly.

To establish the client side, UCC has a command open-tunnel, which behaves similarly to an SSH tunnel (ssh -L
...)

It is started by

$ ucc open-tunnel -L <listen-port> <endpoint>

The listen-port is the port where a local application can connect. You can use “0” to use any free port.

The endpoint is a UNICORE job endpoint URL, with a few extra parameters added:

/forward-port?port=<service_port>&host=<service_host>&loginNode=<tsinode

The port parameter is mandatory, and denotes the port where the backend service is listening.

The host and loginNode are optional:

• host is the host where the service is running, must be reachable from the TSI (login node). It defaults to
localhost (as seen from the login node!).

• loginNode is useful in cases where there are multiple login nodes, and you wish to control on which login node
the forwarding process is launched.

Upon connection, the tunneling process is initiated, and the forwarding of data is started. To stop listening and for-
warding, press Control-C, or use some other method to stop the UCC process.

4.2.1.13.1 Example

While usually the backend service is also started via UNICORE, that is not strictly necessary. Any of your job endpoints
will do.

In this example, however, we launch a Python web server via UNICORE, and then connect to that Python service via
a tunnel.

Launch a UCC shell with ucc shell ... and run the following job to start the service, which will be listening on
port 8877:

run -a

{ "Executable" : "python3 -m http.server 8877" }

(type CTRL-D to to launch the job)

Make sure to wait until this job is running, i.e.

job-status $_

shows it as RUNNING. The UCC shell special variable $_ automatically contains the last URL, i.e. the new job’s
URL.

50 Chapter 4. User Documentation

UNICORE Docs

To open the tunnel:

open-tunnel -L 4321 $_/forward-port?port=8877

this will open a local listener on port 4321.

To test your tunnel, run something like the following (from ANOTHER terminal, don’t kill UCC):

wget http://localhost:4321/stdout

You might also try and open "http://localhost:4321" in a browser.

4.2.1.13.2 Final notes

Attention: USE RESPONSIBLY! This tool is not intended for high volume data streaming or a very high number
of concurrent connections, since it does incur some overhead on the UNICORE infrastructure.

4.2.1.14 UCC for site administrators

UCC can be used for administrative and user support tasks, like checking server status, or getting the full details of a
user job.

4.2.1.14.1 Security considerations

Usually, each UNICORE user has only access to his or her own resources (such as jobs). For administrative use, you
will need to aquire administrator privileges. There are two ways to achieve this:

• create dedicated user credentials (e.g. a certificate) and map them to the role admin (in the XUUDB, or whatever
attribute source you are using). This method is recommended if you want to remotely administrate UNICORE/X.

• use the server keystore (of the UNICORE/X server you want to administrate) as UCC keystore. This will also give
you administrator privileges. For this you will need to be logged on to the UNICORE/X server, and UNICORE/X
must accept certificate authentication.

4.2.1.14.2 Admin commands

UCC has dedicated commands for accessing the AdminService of a UNICORE/X container. To get started, try:

$ ucc admin-info -l

UCC will try to access the admin service on each availabe UNICORE/X server. For each server, a list of statistical and
performance data will be listed.

It will also list the available admin commands for each server, with a short description of their parameters. For example,
here is a sample output:

https://localhost:8080/DEMO-SITE/services/AdminService?res=default_admin
Services:
TargetSystemFactoryService[1]
...

(continues on next page)

4.2. UNICORE Commandline Client 51

http://localhost:4321

UNICORE Docs

(continued from previous page)

Monitors:
use.externalConnectionStatus.REST_UnitySAMLAuthenticator: OK
use.security.overview: ServerIdentity: CN=Demo UNICORE/X,O=UNICORE,C=EU;Expires: Thu␣

→˓Sep 09 12:01:19 CEST 2032;IssuedBy: CN=Demo CA,O=UNICORE,C=EU
....

Metrics:
use.externalConnectionStatus.REST_UnitySAMLAuthenticator: OK
use.rest.callFrequency: 0.016677196376660174
...

Available commands:
ShowJobDetails : parameters: jobID, [xnjsReference]
ShowServerUsageOverview : parameters: [clientDN]
ToggleResourceAvailability : 'resources' - comma separated list of IDs
ToggleJobSubmission : parameters: [message]
ToggleBESJobSubmission :

To invoke a command, the admin-runcommand is used. It can take optional parameters.

Disabling/enabling job submission

For example, it is possible to disable/enable job submission to the server, using the ToggleJobSubmission command,
which can take an optional message:

$ ucc admin-runcommand ToggleJobSubmission message="Maintenance"

The service will reply:

$> SUCCESS, service reply: OK - job submission is disabled

If a user now tries to submit, she will receive an error message on submission. Running the command again will
re-enable the service:

$ ucc admin-runcommand ToggleJobSubmission message="Maintenance"
$> SUCCESS, service reply: OK - job submission is now enabled

Getting job details

To get the full job details (for example in user support), try:

$ ucc admin-runcommand ShowJobDetails jobID=<unique_jobid>

For example,

ucc admin-runcommand ShowJobDetails jobID=461f78c7-82a6-4887-9c33-6f538a4b0cb2
SUCCESS, service reply: Job information for 461f78c7-82a6-4887-9c33-6f538a4b0cb2
{Info=Action ID : 461f78c7-82a6-4887-9c33-6f538a4b0cb2
Action type : JSON
Status : DONE (trans.: none)
Result : SUCCESSFUL [Success.]
Owner : CN=Demo User, O=UNICORE, C=EU

(continues on next page)

52 Chapter 4. User Documentation

UNICORE Docs

(continued from previous page)

Job Definition: {"Job type":"interactive","DetailedStatusDisplay":"true","KeepFinishedJob
→˓":"true","Output":"/tmp","IDLocation":"/tmp","Executable":"date","haveClientStageIn":
→˓"false","Tags":["testing"]}
Processing context: de.fzj.unicore.xnjs.ems.ProcessingContext@17f4b0b6
Application Info: Application <unnamed>
Job log:
Thu Feb 25 16:25:07 CET 2021: Created with ID 461f78c7-82a6-4887-9c33-6f538a4b0cb2
Thu Feb 25 16:25:07 CET 2021: Created with type 'JSON'
Thu Feb 25 16:25:07 CET 2021: Client: Name: CN=Demo User,O=UNICORE,C=EU
Xlogin: uid: [schuller], gids: [schuller:audio, active=schuller, addingOSgroups: true]
Role: user: role from attribute source
Security tokens: User name: CN=Demo User,O=UNICORE,C=EU
Delegation to consignor status: true, core delegation status: false
Message signature status: UNCHECKED
Client's original IP: 127.0.0.1
Thu Feb 25 16:25:07 CET 2021: No staging in needed.
Thu Feb 25 16:25:07 CET 2021: Status set to READY.
Thu Feb 25 16:25:07 CET 2021: Status set to PENDING.
Thu Feb 25 16:25:08 CET 2021: Execution on login node
Thu Feb 25 16:25:08 CET 2021: Command is:
Thu Feb 25 16:25:08 CET 2021: #!/bin/bash -l
export PROJECTS_DIR=/opt/shared-data
#TSI_EXECUTESCRIPT

#RESOURCES
#TSI_DISCARD_OUTPUT true
#TSI_SCRIPT
#TSI_UMASK 77
umask 77
cd /opt/shared-data/UNICORE-Jobs//461f78c7-82a6-4887-9c33-6f538a4b0cb2/
{ date > /opt/shared-data/UNICORE-Jobs//461f78c7-82a6-4887-9c33-6f538a4b0cb2/stdout 2> /
→˓opt/shared-data/UNICORE-Jobs//461f78c7-82a6-4887-9c33-6f538a4b0cb2/stderr; echo $? > /
→˓opt/shared-data/UNICORE-Jobs//461f78c7-82a6-4887-9c33-6f538a4b0cb2//UNICORE_SCRIPT_
→˓EXIT_CODE ; } & echo $! > /opt/shared-data/UNICORE-Jobs//461f78c7-82a6-4887-9c33-
→˓6f538a4b0cb2//UNICORE_SCRIPT_PID
Thu Feb 25 16:25:08 CET 2021: TSI reply: submission OK.
Thu Feb 25 16:25:11 CET 2021: Submitted to classic TSI as [schuller schuller:DEFAULT_
→˓GID] with PID=30112 on [localhost]
Thu Feb 25 16:25:11 CET 2021: Exit code 0
Thu Feb 25 16:25:11 CET 2021: Job completed on BSS.
Thu Feb 25 16:25:11 CET 2021: Status set to DONE.
Thu Feb 25 16:25:11 CET 2021: Result: Success.
Thu Feb 25 16:25:11 CET 2021: Total: 3 sec., Stage-in: 0 sec., Queued: 0 sec., Main: 0␣
→˓sec., Stage-out: 0 sec.}

Thus you can get a full view of what the user submitted and what was executed.

4.2. UNICORE Commandline Client 53

UNICORE Docs

4.2.1.14.3 Listing jobs, sites, . . .

You can also use all normal UCC commands to access the server. Note however that due to the authentication and
authorisation system in UNICORE, this may not always work as expected: the admin user might not have the required
Unix permissions to access files, list directories, etc.

The UCC commands that list server-side things (list-jobs, etc.) accept a filtering option, that can be used to limit the
results of the operation. Filtering works on the XML resource properties of the resource in question.

Filtering is enabled by the -f or --filter option of the form:

-f NAME OPERATOR VALUE

where NAME is the name of an element from the JSON resource properties.

For example, to list all jobs:

$ ucc list-jobs -f status equals RUNNING

To list all jobs submitted on Nov 13, 2007:

$ ucc list-jobs -f submissionTime contains 2007-11-13

Table 4.11: Filtering options
Operator (long and short form) Description
equals, eq String equality (ignoring case)
notequals, neq String inequality (ignoring case)
contains, c Substring match
notcontains, nc substring non-match
greaterthan, gt Lexical comparison
lessthan, lt Lexical comparison

4.2.1.14.4 Low-level operations

UCC supports low-level access to REST API endpoints using the rest command, specifically you can execute HTTP
GET, PUT, POST and DELETE requests with JSON content.

For example, to delete (destroy) a resource:

$ ucc rest delete <Address>

To get a complete property listing (i.e. print the JSON resource property document):

$ ucc rest get <Address>

To change properties, use the put command with JSON content:

$ ucc rest put '{"Tags": ["tests", "hpc"]}'

These commands can be abbreviated, e.g. ucc rest d <Address>

54 Chapter 4. User Documentation

UNICORE Docs

4.2.1.15 Scripting

UCC can execute Groovy scripts. Groovy is a dynamic scripting language similar to Python or Ruby, but very closely
integrated with Java. The scripting facility can be used for automation tasks or implementation of custom commands,
but it needs a bit of insight into how UCC and UNICORE work.

4.2.1.15.1 Script context

Your Groovy scripts can access some predefined variables that are summarized in the following table:

Table 4.12: Variables accessible for scripts
variable description Java type
registry A preconfigured client for accessing the reg-

istry
eu.unicore.client.registry.IRegistryClient

configurationProvider Security configuration provider (truststore,
etc)

de.fzj.unicore.ucc.authn.UCCConfigurationProvider

auth REST authentication mechanism eu.unicore.services.rest.client.IAuthCallback
registryURL the URL of the registry java.lang.String
messageWriter for writing messages to the user de.fzj.unicore.ucc.MessageWriter
commandLine the command line org.apache.commons.cli.CommandLine
properties defaults from the user’s properties file java.util.Properties

4.2.1.15.2 Examples

Some example Groovy scripts can be found in the samples directory of the UCC distribution.

4.2.1.16 Frequently asked questions

4.2.1.16.1 Configuration

Do I really have to store my password in the preferences file? Isn’t this insecure?

Putting the password in a file or giving it as a commandline parameter can be considered insecure. The
file could be read by others, and the commandline parameters may be visible in for example in the output
of the ps command. Thus, UCC will simply ask for the password in case you did not specify it.

How can I enable more detailed logging?

UCC uses Log4j 2, by default the configuration is done in <UCC_HOME>/conf/logging.properties.
You can edit this file and increase the logging levels, choose to log to a file or to the console, etc.

4.2. UNICORE Commandline Client 55

https://groovy-lang.org
https://github.com/UNICORE-EU/commandline-client/tree/master/distribution/src/main/samples
https://logging.apache.org/log4j/2.x/manual/configuration.html

UNICORE Docs

4.2.1.16.2 Usage

Can I use multiple registries with UCC?

Yes. Simply use a comma-separated list of URLs for the -c option. However, you may only use a single
key/truststore, so all registries (and sites listed in them) must accept the same security credentials.

Can I upload and execute my own executable?

Yes. Check Running jobs.

Can I use UCC to list the contents of the registry?

Using the rest command (and optionally the UNIX jq utility for formatting the output), this is very easy.
For example,

$ ucc rest get https://localhost:8080/DEMO-SITE/rest/core/registries/default_
→˓registry | jq

will list the content of the registry.

4.2.2 Building the UCC

4.2.2.1 Prerequisites

You need Java and Apache Maven. Check the versions given in the pom.xml file.

4.2.2.2 Building Java code

Clone the git repo and build the jars from the root dir:

$ git clone https://github.com/UNICORE-EU/commandline-client.git
$ cd commandline-client
$ mvn clean install -DskipTests

4.2.2.3 Creating distribution packages

The following commands create the distribution packages in tgz, deb and rpm formats. The versions are taken from the
pom.xml.

4.2.2.3.1 tgz

$ cd distribution
$ mvn package -DskipTests -Ppackman -Dpackage.type=bin.tar.gz

56 Chapter 4. User Documentation

https://github.com/UNICORE-EU/commandline-client/blob/master/pom.xml
https://github.com/UNICORE-EU/commandline-client/blob/master/pom.xml

UNICORE Docs

4.2.2.3.2 deb

$ cd distribution
$ mvn package -DskipTests -Ppackman -Dpackage.type=deb -Ddistribution=Debian

4.2.2.3.3 rpm redhat

$ cd distribution
$ mvn package -DskipTests -Ppackman -Dpackage.type=rpm -Ddistribution=RedHat

4.3 REST API

This document describes and documents the REST APIs for the UNICORE/X server (job submission and management,
data access and data transfer) and the Workflow server (workflow submission and management).

The documentation generally refers to the latest released version.

A Python client library is under development on GitHub and can be installed from PyPI via pip install pyunicore.

Also, have a look at Rest API Examples for some examples using PyUNICORE.

4.3. REST API 57

https://github.com/HumanBrainProject/pyunicore/

UNICORE Docs

4.3.1 Basics

The REST API supports both the JSON (application/json) and HTML (text/html) content types.

4.3.1.1 Base URL

The base URL of the the REST API for a single UNICORE/X server is https://gateway_url/SITENAME/rest/
core.

In the following, we will abbreviate this URL as BASE Authentication.

You need a user account on the UNICORE/X server, which is typically configured to use a password (or using an
OAuth2 bearer token). The supported authentication methods depend on the UNICORE server.

For example, when username/password are enabled you can use curl to access the base URL above:

$ curl -k -u user:pass -X GET -H "Accept: application/json" BASE

In the following examples, we leave out the authentication details!

4.3.1.2 User preferences

In some special cases, you as a user might have more than one available unix account, or you might have more than just
the user role on the server. It is possible to select from the available attributes. Available attributes are: role, uid,
group.

For example, to execute a call using the Unix ID some.user, you can specify this in a HTTP header as follows:

$ curl -k -u user:pass -X GET -H "Accept: application/json" \
-H "X-UNICORE-User-Preferences: uid:some.user" BASE

Or, to select role admin (if you are worthy):

$ curl -k -u user:pass -X GET -H "Accept: application/json" \
-H "X-UNICORE-User-Preferences: role:admin" BASE

You can find out the available values for these attributes with a GET to the BASE URL!

To give more than one user preference, you can separate the values via commas, for example:

$ curl -k -u user:pass -X GET -H "Accept: application/json" \
-H "X-UNICORE-User-Preferences: uid:myuser,group:mygroup" BASE

4.3.1.3 Security session handling

If authentication was successful, the server reply will include a security session ID and a security session lifetime as
HTTP headers:

X-UNICORE-SecuritySession:
X-UNICORE-SecuritySession-Lifetime: ...

The lifetime is given in milliseconds.

You can use the session ID in place of authentication info, i.e.

58 Chapter 4. User Documentation

../../admin-docs/unicorex/manual.html#password-auth
../../admin-docs/unicorex/manual.html#oauth2-bearer-token
../../admin-docs/unicorex/manual.html#auth-img-authentication

UNICORE Docs

$ curl -k -H "X-UNICORE-SecuritySession: ..." BASE

If the session is no longer valid the server will reply with a HTTP 432 error code, and you must re-send the authentication
information.

Using security sessions is recommend especially when third-party IdPs for used for authentication, because it reduces
the load on the servers and improves throughput and turnaround time for your API requests.

4.3.2 General API features

A few common operations and principles apply to all the REST resources.

• GET is used to retrieve information (resource properties). Depending on the Accept: header the format can be
JSON or HTML (JSON is recommended!).

• PUT is used to modify resource properties (JSON format).

• POST creates new resources (e.g. job submission). The URL of new resource is returned in the response
Location header. Some resources support POST also for triggering actions (e.g., job abort).

• DELETE removes resources.

4.3.2.1 Media types

The REST API uses the following media types:

• application/json is the commonly used media type for all sorts of tasks.

• application/octet-stream : used for upload/download of file data.

Make sure to add the proper headers e.g. Accept: application/json and/or Content-Type: application/
json to your messages.

4.3.2.2 Error handling

As usual, a HTTP error code that is not in the 2xx range signifies some sort of problem. For example,

• 401 Unauthorized - your credentials are wrong or you do not have the right to access

• 404 Not found - the resource does exist, or you have a typo in the URL

• 500 Internal server error - a server-side error occurred

In many cases a JSON document containing an error message is returned.

4.3.2.3 Paging mechanism, using tags and controlling the output

Since lists of things can get long (e.g. files or jobs), there is a paging mechanism that is available on all the list-like
things like job lists.

Let’s look at an example. To list 5 jobs starting at an offset of 2, you’d do a GET for

BASE/sites/{id}/jobs?offset=2&num=5

The result would be something like:

4.3. REST API 59

UNICORE Docs

{
"_links": {

"self": {
"href": "BASE/sites/4q0b44VfBP2/jobs?offset=2&num=5"

},
"next": {

"href": "BASE/sites/4q0b44VfBP2/jobs?offset=7&num=5"
},
"previous": {

"href": "BASE/sites/4q0b44VfBP2/jobs?offset=0&num=5"
}

},
"jobs": [

"BASE/jobs/DZBiAG5O0kH",
... rest of job URLs omitted ...

]
}

Note that you get links to the next and previous page of results.

Another query parameter is tags which works on all lists of resources (jobs, storages, . . . but not files) and which
allows you to limit results to those elements that have the specified tag(s).

BASE/sites/{id}/jobs/?tags="hpc,test"

Last not least you can control which fields you want in the output of a GET request. This is done via another query
parameter fields which works on all resources (jobs, storages, . . .) and which allows you to limit results to the named
fields.

BASE/sites/{id}/jobs/DZBiAG5O0kH?fields=status

Parameter Format Description
offset integer (0, 1, 2, . . .) How many elements of the list to skip
num integer (0, 1, 2, . . .) How many elements you want
tags comma-separated strings Only list elements with this tag
fields comma-separated strings Only return the named properties

4.3.2.4 Modifying resource properties

Resource properties can be modified by a PUT request in JSON format, which contains the properties and their new
values, e.g.

{
"tags": ["test", "hpc"],
"foo" : "bar"

}

to modify the umask of a storage. The server replies with a JSON indicating which properties were modified, or if
errors occurred:

{
"foo": "Property not found or cannot be modified!",

(continues on next page)

60 Chapter 4. User Documentation

UNICORE Docs

(continued from previous page)

"tags": "OK"
}

4.3.3 REST resources for jobs and data management

The base URL of the the REST API for a single UNICORE/X server is https://gateway_url/SITENAME/rest/
core.

URL Method Description
/ GET Get info about the client, the server and links to other resources
/certificate GET Get the server’s public key (needs “Accept: text/plain” or “Accept:

*” header)

4.3.3.1 Synopsis

A GET request to the base URL retrieves some information about the current client, e.g. its security attributes. Also,
links to the other resources (sites, jobs, etc) are given, as well as some information about the server.

4.3.3.2 API Summary

URL Method Description
/ GET Get info about the client, the server and links to other resources
/certificate GET Get the server’s public key (needs “Accept: text/plain” or “Accept:

*” header)

4.3.3.3 Site factories

4.3.3.3.1 Synopsis

In UNICORE there are several factory services that are used to get general site information even as a non-authorized
(but authenticated) user.

The factories resource is used to access the target system factory services available to the user and create new site
resources.

4.3.3.3.2 API Summary

URL Method Description
/factories GET Get a list of all site factories
/factories POST Create a new site
/factories/id GET Get the representation of the given factory
/factories/id POST Create a new site
/factories/id/applications GET Get a list of all applications
/factories/id/ applications/appID GET Get the representation of the given applications

4.3. REST API 61

UNICORE Docs

4.3.3.3.3 Site properties

A site factory exposes its capablilities (number of CPUs, etc) via its JSON or HTML representation. This includes the
applications that are configured in the UNICORE server’s IDB file.

Applications are listed in the form

NAME---vVERSION

e.g.

Date---v1.0

You can access more details about an application at the URL

BASE/factories/{id}/applications/{applicationID}

where the application ID is again composed of the application name and version as above.

4.3.3.4 Sites

4.3.3.4.1 Synopsis

The sites resource is used to access the target system services available to the user, create new ones, and to submit jobs.

4.3.3.4.2 Creating a site

Using POST, a new site resource can be created.

$ curl -X POST -H "Content-Type: application/json" --data "{}" https://localhost:8080/
→˓DEMO-SITE/rest/core/sites

Note that if necessary, a default site is created automatically when you submit a job.

4.3.3.4.3 Site properties

A site exposes its capabilities (number of CPUs, etc) via its JSON or HTML representation. This includes the applica-
tions that are configured in the UNICORE server’s IDB file.

Applications are listed in the form

NAME---vVERSION

e.g.

Date---v1.0

You can access more details about an application at the URL

BASE/sites/{id}/applications/{applicationID}

where the application ID is again composed of the application name and version as above.

62 Chapter 4. User Documentation

UNICORE Docs

4.3.3.4.4 Listing jobs

You can list all the jobs submitted to a site using the BASE/sites/{id}/jobs endpoint, by doing a GET for

BASE/sites/{id}/jobs

Usually it is simpler to use the BASE/jobs endpoint.

4.3.3.4.5 API Summary

URL Method Description
/sites GET Get a list of all sites
/sites POST Create a new site
/sites/id GET Get a representation of the given site
/sites/id DELETE Destroy a site (but not the jobs)
/sites/id POST Submit a job to the site
/sites/id/jobs?offset= GET List num jobs, starting at offset, with the given tags
/sites/id/applications GET Get a list of all applications
/sites/id/applications/ appID GET Get a representation of the given application

4.3.3.5 Storages and files

4.3.3.5.1 Synopsis

The storages resource is used to access the storages available to the user, create new ones, access files, and initiate file
transfers. Storages may support metadata management as well (depending on server configuration).

4.3.3.5.2 Listing storages

To get a list of storages accessible to you, simply do a GET for BASE/storages.

Each storage has a files subresource which is used for accessing files on a particular storage.

To list files on a storage with id {id}, do a GET for BASE/storages/{id}/files/{filePath}.

The same way as for jobs, there is a paging mechanism.

4.3.3.5.3 Data upload and download

There are two ways to transfer data to/from a UNICORE storage via the REST API. The simpler, more RESTful way is
to use HTTP GET and PUT requests to download or upload data. This should be straightforward, the only thing to note
is to NOT use the media type application/json, which is reserved for getting information about the file or changing
properties.

For example, let’s download a file named stdout using curl:

$ curl -X GET BASE/storages/{id}/files/stdout

The GET supports the Range header, if you want to download only part of the file. For example,

4.3. REST API 63

UNICORE Docs

$ curl -X GET -H "Range: bytes=10-42"

You can also get the “tail” of the file, e.g. to get the last 100 bytes

$ curl -X GET -H "Range: bytes=-100"

Similarly, to upload a file localfile to a remote file newfile:

$ curl -X PUT --data-binary @localfile BASE/storages/{id}/files/some_dir/newfile

Note: Any required parent directories will be created automatically.

Attention: There is a special feature related to the Content-Type header here. If the UNICORE/X server is setup
with metadata support, the value of the Content-Type header will be stored in the file’s metadata. If you download
the file later, the correct Content-Type will be used. This will work nicely and automatically for every media type
EXCEPT application/json! See the Rest API Examples for a detailed example.

The second way is to create a UNICORE file transfer by POSTing to the /imports or /exports path, which requires
custom clients, e.g. to support UFTP. For this reason, we do not consider this any further here.

4.3.3.5.4 Creating directories

If you want to create an empty directory, POST an empty JSON to BASE/storages/{id}/files/{filePath}.

4.3.3.5.5 Copying and renaming data to the same storage

Copy and rename on the same storage is done by POSTing a JSON to specific action URLs. The content of the JSON
is

{"from": "source", "to": "target" }

and the URLs are

BASE/storages/{id}/actions/copy
BASE/storages/{id}/actions/rename

4.3.3.5.6 Copying data to another server

UNICORE supports server-to-server transfers using one of several protocols including the rather efficient UFTP pro-
tocol. This is initiated by POSTing to a storage resource’s/transfers path BASE/storages/{id}/transfers.

The transfer is described using JSON, and can be either push or pull.

Parameter Description
file the file on the storage, relative to storage root
target the target URL in case of “data push”
source the source URL in case of “data pull”
extraParameters any additional parameters (e.g. number of UFTP streams)

64 Chapter 4. User Documentation

https://uftp-docs.readthedocs.io/en/latest/user-docs/uftp-client/index.html
https://uftp-docs.readthedocs.io/en/latest
https://uftp-docs.readthedocs.io/en/latest

UNICORE Docs

Note that to push data from a storage, you’d use the file and target parameters, while for data pull, you need the file and
source.

For example, to pull a file via UFTP, you would POST a JSON that looks something like this:

{
file: "localFile.txt",
source: "UFTP:https://somehost/SITE/rest/core/storages/{id}/files/path_to_file"
extraParameters: {
"uftp.compression" : true,

}
}

You can also schedule the transfer, by using

scheduledStartTime: <TIME in ISO "yyyy-MM-dd'T'HH:mm:ssZ" format>

as one of the extraParameter settings.

4.3.3.5.7 Files and metadata

Files on a storage are accessed via the files subresource, e.g.

BASE/storages/tmp/files/test.txt

would access the file test.txt on the storage with id tmp.

Depending on the media type used, GET and PUT fulfill different functions. Using JSON, the file’s properties can be
accessed or modified. Using application/octet-stream the actual binary file data can be downloaded or uploaded.

The file properties include metadata, which can also be modified (if the server is configured so that metadata is sup-
ported).

Searching the metadata index

If the storage supports metadata, the index can be searched using a GET request as follows:

$ curl -H "Accept: application/json" BASE/storages/{id}/search?q=querystring

The query string is appended as the ?q=... URL query parameter. The server will reply with a JSON listing the files
found:

{
"status": "OK",
"numberOfResults": 2,
"_links": {

"search-result-1": {
"href": "https://..."

},
"search-result-2": {

"href": "https://..."
},
...

},
(continues on next page)

4.3. REST API 65

UNICORE Docs

(continued from previous page)

"query": "query-string"
}

Triggering the automated metadata extraction

Triggering UNICORE’s metadata extraction is done by a POST to an action URL for a file or a directory.

$ curl -X POST BASE/storages/{id}/files/some_directory/actions/extract --data-binary␣
→˓@params.json -H "Content-Type: application/json"

This would extract metadata from the files in the some_directory directory.

The POSTed JSON can be empty {}, or it may contain extra parameters controlling the extraction process. Currently
only a single parameter is supported, which controls the recursion depth for the extraction process, e.g.

{
"depth": "2"

}

4.3.3.5.8 API Summary

URL Method Description
/storages GET Get a list of all storages
/storages POST Create a new storage
/storages/id GET Get a representation of a storage
/storages/id DELETE Destroy a storage. Depending on the storage type, this

may delete the physical directory.
/storages/id/files/ filePath GET (as applica-

tion/json)
Get file list or file details

/storages/id/files/ PUT (as applica-
tion/json)

Modify file properties (including metadata)

/storages/id/files/ GET (as applica-
tion/ octet-stream)

Download a file

/storages/id/files/ filePath PUT (as application/
octet-stream)

Upload a file

/storages/id/files/ dirPath POST Create a new directory
/storages/id/files/ filePath DELETE Delete a file or directory
/storages/id/actions/copy POST Copy file on the same storage resource
/storages/id/actions/ rename POST Rename file on the same storage resource
/storages/id/imports POST Create an client-server transfer (data upload)
/storages/id/exports POST Create an server-client transfer (data download)
/storages/id/transfers POST Create a server-server transfer
/storages/id/search?q= query-
string

GET Search the metadata index using the given query string

66 Chapter 4. User Documentation

UNICORE Docs

4.3.3.6 Storage factories

4.3.3.6.1 Synopsis

Storage factory endpoints allow the user to create Storage instances. Depending on the UNICORE server configuration
there may be several types of Storages available, which may accept parameters to configure them.

The storagefactories resource is used to access the storage factory services available to the user, which then can
be used to create new Storage endpoints.

These Storage endpoints are typically used as temporary resources, since they will eventually get cleaned up automat-
ically by the server.

4.3.3.6.2 Creating storages

To create a Storage, you would POST to the appropriate endpoint:

$ curl -X POST BASE/storages/default_storage_factory --data-binary @params.json -H
→˓"Content-Type: application/json"

The POSTed JSON can be empty {}, which will create a Storage pointing to some pre-configured directory on the HPC
file system.

It may contain extra parameters controlling the type of storage that is created, and also extra parameters depending on
the type. You can get more information about the possible types and parameters by inspecting the properties of the
storagefactories endpoint, and the properties of the actual factories that are configured.

For example, the storagefactories/default_storage_factory endpoint supports a ‘path’ parameter, which
controls the path the new Storage should access.

{
"path": "/opt/data/"

}

4.3.3.6.3 API Summary

URL Method Description
/storagefactories GET Get a list of all storage factories
/storagefactories/id GET Get the representation of the given factory
/storagefactories/id POST Create a new storage endpoint

4.3.3.7 Jobs

4.3.3.7.1 Synopsis

The jobs resource ist used to access the jobs available to the user, to monitor and manage them. It is also possible to
submit new jobs.

4.3. REST API 67

UNICORE Docs

4.3.3.7.2 Job description format

The job description is described here.

4.3.3.7.3 Data management

The job description can contain data staging instructions for instructing the server to download input data before running
the job, and for uploading results to some remote location when the job is done.

In addition, UNICORE supports client-controlled data staging, i.e. the client can optionally upload required data to the
job’s working directory. You can interact with the jobs working directory, which is a normal UNICORE storage. Thus
all the storage functions above are applicable here as well.

In case you do want to upload any data, you can set an additional flag in the job description JSON:

{
"haveClientStageIn": "true",
}

In this case, the full job submission sequence is:

1. submit job

2. upload data from client to server

3. start job

Note however that small(!) files can be embedded into the job description as well.

In the Rest API Examples you will find some typical job submission and management examples.

4.3.3.7.4 Starting, aborting or restarting jobs

To abort or restart a job, the REST API uses POST requests to special action links, see the API summary below.

4.3.3.7.5 API Summary

URL Method Description
/jobs?offset= GET Get a list of all jobs
/jobs POST Submit a new job. The site will be chosen automatically
/jobs/id GET Get a representation of the given job
/jobs/id/details GET Get batch system level information about the job (if

available)
/jobs/id DELETE Destroy the job and its working directory.
/jobs/id/actions/start POST Start the job (in case the client did manual staging)
/jobs/id}/actions/abort POST Abort the job
/jobs/id/actions/restart POST Restart the job

68 Chapter 4. User Documentation

UNICORE Docs

4.3.3.7.6 Job properties

To get information about a job, do a GET request to the /jobs/ID endpoint.

Property Values Description
status UNKNOWN, STAGINGIN, READY,

QUEUED, RUNNING, STAGIN-
GOUT, FAILED, SUCCESSFUL

The status of the job

statusMessage string status / error summary message
name string Job name as submitted, or “N/A”
log string Execution log
exitCode integer exit code of the application (if available)
queue string batch queue, or “N/A”
submissionTime date-time job submission time
terminationTime date-time time of automated job cleanup
currentTime date-time current server time
owner X500 name job owner (who submitted it)
acl acl access control list
submissionPreferences map user preferences (uid, gid) if applicable

4.3.3.8 Transfers

4.3.3.8.1 Synopsis

The transfers resource ist used to access the server-to-server file transfers available to the user, to monitor and
manage them.

4.3.3.8.2 API Summary

URL Method Description
/transfers GET Get a list of all transfers
/transfers/id GET Get a representation of a transfer
/transfers/id DELETE Abort and destroy the transfer

4.3.3.9 Workflow

4.3.3.9.1 Synopsis

The UNICORE Workflow system can be accessed for workflow submission and management.

Basics like authentication, user preferences, security sessions work the exact same way as for a UNICORE/X server.

NOTE that the BASE url for workflows is:

https://gateway_url/WORKFLOW_SITENAME/rest/workflows

This base workflows URL is used to list the workflows available to the user and submit new ones.

4.3. REST API 69

UNICORE Docs

4.3.3.9.2 API Summary

URL Method Description
/ GET Get a list of all workflows accessible to the user
/?offset= GET List num workflows, starting at offset, with the given tags
/ POST application/

json
Submit a new workflow and start processing it

/id GET Get a representation of the workflow with the given ID
/id/actions/abort POST Abort the workflow with the given ID
/id/actions/resume POST Resume the workflow with the given ID, if in state

“Held”
/id/jobs?offset= GET Get a list of all jobs submitted for this workflow
/id/files GET Get a list of the workflow files for this workflow
/id/files PUT Modify the list of the workflow files for this workflow

4.3.3.9.3 Workflow submission

Submitting a workflow is done with a single POST with Content-Type: application/json to the base URL.

If successful, a new workflow instance will be created, and the URL returned in a HTTP location header.

If the workflow contains errors, the response body will contain a list of errors.

4.3.3.9.4 Workflow description format

The JSON workflow description as understood by the Workflow engine is described here: Workflow description.

4.3.3.9.5 Workflow properties

For each workflow, a GET request will retrieve a representation of the current workflow state, including the current state
of the workflow variables.

To get a list of jobs that were submitted for the workflow, do a GET request to BASE/{id}/jobs.

To get a list of workflow files (registered names and physical locations) for the workflow, do a GET request to BASE/
{id}/files.

4.3.3.9.6 Hold and resume

A workflow in held state (waiting for user input) can be resumed by a POST to the URL BASE/{id}/actions/
resume with JSON content. The JSON can contain new values for any workflow variables, e.g.

{
"Variable1": "10",
"Variable2": "true",
}

70 Chapter 4. User Documentation

UNICORE Docs

4.3.4 Utility endpoints

4.3.4.1 Getting the server certificate

A GET request to BASE/certificate will retrieve the server’s certificate in PEM format

$ curl -k BASE/certificate
-----BEGIN CERTIFICATE-----
MIIC3j...
-----END CERTIFICATE-----

4.3.4.2 Creating a token

The GET request to endpoint BASE/token allows you to create a JWT token signed by the server, that can be used for
authentication later.

$ curl -k BASE/token
eyJh...

The token will (of course) give the same level of authentication that was used when creating it!

The endpoint accepts parameters as query parameters to the GET request

• lifetime token lifetime in seconds. If not set, the server’s default is used (usually 300 seconds)

• limited=true will make the token only valid for the issuing server

• renewable=true will allow to get new tokens using the issued token

For example

$ curl -k -u demouser:test123 "BASE/token?lifetime=3600&limited=true&renewable=true"
eyJh...

4.3.5 Examples and HowTos

Can be found here Rest API Examples.

4.3.5.1 Rest API Examples

The following are some examples that use Python and the PyUNICORE library.

PyUNICORE can be installed from PyPI using

pip install -U pyunicore

The full documentation for PyUNICORE can be found here.

4.3. REST API 71

https://github.com/HumanBrainProject/pyunicore/
https://pyunicore.readthedocs.io/

UNICORE Docs

4.3.5.1.1 Basic job submission

Job submission and management

4.3.5.1.2 Storages and data management

Storages and data management

4.3.5.1.3 Workflow submission and management

Workflow submission and management

Job submission and management

#!/usr/bin/env python3

import json
import pyunicore.client as uc_client
import pyunicore.credentials as uc_credentials

Base URL
base = "https://localhost:8080/DEMO-SITE/rest/core"
print ("Accessing REST API at ", base)

#
setup authentication using username and password
#
credentials = uc_credentials.UsernamePassword("demouser", "test123")

#
Create a client
#
site_client = uc_client.Client(credentials, base)

#
Run a test job
#
job_description = {'Executable': "/bin/ls", 'Arguments' :["-lisa", "$HOME"], }

job = site_client.new_job(job_description)
print("Submitted: %s" % job)

let's wait while the job is still running
job.poll()

print job properties
(continues on next page)

72 Chapter 4. User Documentation

UNICORE Docs

(continued from previous page)

print (json.dumps(job.properties, sort_keys=True, indent=4))

Accessing job outputs

We can access the wob working directory and the stdout/stderr files

working_dir = job.working_dir
print (json.dumps(working_dir.properties, sort_keys=True, indent=4))

Let's list all files in the working directory

for f in working_dir.listdir("."):
print(f)

Now let's download data from the 'stdout' file
stdout_content = working_dir.stat("stdout").raw().readlines()
for line in stdout_content:

print(line)

Storages and data management

#!/usr/bin/env python3

import json, time
import pyunicore.client as uc_client
import pyunicore.credentials as uc_credentials

Base URL
base = "https://localhost:8080/DEMO-SITE/rest/core"
print ("Accessing REST API at ", base)
setup authentication using username and password
credentials = uc_credentials.UsernamePassword("demouser", "test123")
Create a client
site_client = uc_client.Client(credentials, base)

List storages
all_storages = site_client.get_storages()
for storage in all_storages:

print(storage)

create two storages for testing
storage = site_client.new_job({}).working_dir
storage2 = site_client.new_job({}).working_dir

storage properties
print (json.dumps(storage.properties, sort_keys=True, indent=4))

upload some data
storage.upload("test.txt", destination="test.txt")

(continues on next page)

4.3. REST API 73

UNICORE Docs

(continued from previous page)

List all files
for f in storage.listdir("."):

print(f)

Access a file
test_file = storage.stat("test.txt")
print (json.dumps(test_file.properties, sort_keys=True, indent=4))

Download data from that file
file_content = test_file.raw().readlines()
for line in file_content:

print(line)

server-server copy: "storage2" pulls file from "storage"
source = storage._to_file_url("test.txt")
print("Source file URL: "+source)
transfer = storage2.receive_file(source, "copied-test.txt")
while transfer.is_running():

time.sleep(1)
print (json.dumps(transfer.properties, sort_keys=True, indent=4))

Access copied file
copied_file = storage2.stat("copied-test.txt")
print (json.dumps(copied_file.properties, sort_keys=True, indent=4))

Workflow submission and management

#!/usr/bin/env python3

import json
import pyunicore.client as uc_client
import pyunicore.credentials as uc_credentials

base = "https://localhost:8080/WORKFLOW/rest/workflows"
print ("Accessing Workflow REST API at ", base)

#
setup authentication using username and password
#
credentials = uc_credentials.UsernamePassword("demouser", "test123")

#
Create a client for the Workflow service
#
workflow_client = uc_client.WorkflowService(credentials, base)

#
create the workflow description

(continues on next page)

74 Chapter 4. User Documentation

UNICORE Docs

(continued from previous page)

#

wf_json = {
"activities": [

{
"id": "date1",
"job": {

"Executable": "date",
"Job type": "INTERACTIVE",

}
}

],
}

#
create a new workflow instance on the server
#
workflow = workflow_service.new_workflow(workflow_description)

see the workflow properties
print (json.dumps(workflow.properties, sort_keys=True, indent=4))

4.4 Job description format

A UNICORE job describes a single job on the target system.

By default, the job will be submitted to the batch system and run on a compute node. However, UNICORE supports
other job types as well.

UNICORE uses a JSON format that allows you to specify the application or executable you want to run, arguments
and environment settings, any files to stage in from remote servers and any result files to stage out. Depending on the
client, the JSON may also contain additional instructions that are relevant to that client, so make sure to check the client
manuals as well.

4.4.1 Overview

UNICORE’s job description consists of several parts (their order does not matter):

• an Imports section listing data to be staged in to the job’s working directory from remote storage locations
(and/or the client’s file system, if you use UCC)

• pre-processing

• a section describing the main executable

• post-processing

• an Exports section listing result files to be staged out to remote storage locations

• a Resources section stating any resource requirements like batch queue, job runtime or number of nodes

• a number of additional elements for setting the job name, or defining tags for the job

4.4. Job description format 75

UNICORE Docs

Here is a table listing the supported elements, these will be described in more detail below.

Tag Type Description
ApplicationName String Application name
ApplicationVersion String Application version
Executable String Command line
Arguments List of strings Command line arguments
Environment Map of strings Environment values
Parameters Map Application parameters
Stdout String Filename for the standard output (default: “stdout”)
Stderr String Filename for the standard error (default: “stderr”)
Stdin String Filename for the standard input (optional)
IgnoreNonZeroExitCode “true” / “false” Don’t fail the job if app exits with non-zero exit code

(default: false)
User precommand String Pre-processing
RunUserPrecommandOn-
LoginNode

“true”/”false” Pre-processing is done on login node (default: true)

UserPrecommandIg-
noreNonZeroExitCode

“true”/”false” Don’t fail job if pre-command fails (default: false)

User postcommand String Post-processing
RunUserPostcommandOn-
LoginNode

“true” / “false” Post-processing is done on login node (default: true)

UserPostcommandIg-
noreNonZeroExitCode

“true”/”false” Don’t fail job if post-command fails (default: false)

Resources Map The job’s resource requests
Project String Accounting project
Imports List of imports Stage-in / data import
Exports List of exports Stage-out / data export
haveClientStageIn “true” / “false” Tell the server that the client does / does not want to send

any additional files
Job type ‘batch’,

‘on_login_node’,
‘raw’, ‘allocate’

Whether to run the job via the batch system (‘batch’, de-
fault) or on a login node (‘on_login_node’), or as a batch
job with user-specified file containing the batch batch
system directives (‘raw’), or to only ‘allocate’ resoures
but not start anything

Login node String For ‘on_login_node’ jobs, select a login node by name,
as configured server side. Wildcards ‘*’ and ‘?’ can be
used)

BSS file String For ‘raw’ jobs, specify the relative or absolute file name
of a file containing batch system directives. UNICORE
will append the user executable.

Tags List of strings Job tags
Notification String URL to send job status change notifications to (via HTTP

POST)
User email String User email to send notifications to (if the batch system

supports it)
Name String Job name

76 Chapter 4. User Documentation

UNICORE Docs

4.4.2 Job elements

4.4.2.1 Job types

UNICORE supports four types if jobs. They are selected by the Job type element. If not given, batch is the default.

• batch (or normal) - this is the default. UNICORE submits the job to the batch system. After being scheduled,
the specified executable is launched on the requested number of compute nodes. The job’s resource requests (like
number of nodes or requested run time) are taken from the job’s Resources section.

• on_login_node (or interactive) - the specified executable will be launched on a login node. If you want,
you can select the login node with the Login node element.

• raw - the job goes to the batch system, but the resources are taken from an additional file, which contains BSS
directives (e.g.``#SBATCH . . . `` in the case of Slurm). The name of the file containing BSS directives is given
via the BSS file element.

• allocate - this is basically the same as batch, but it only creates an allocation on the batch system, without
launching any user tasks. You can submit tasks into the allocation later.

4.4.2.2 Specifying the executable or application

To directly call an executable on the remote system:

{
"Executable": "/bin/date",

}

You can specify a UNICORE application (defined in the server’s IDB) by name and (optional) version:

{
"ApplicationName": "Date",
"ApplicationVersion": "1.0",

}

Note the comma-separation and the curly braces.

4.4.2.3 Arguments and Environment settings

Arguments and environment settings are specified using a list of String values. Here is an example.

{

"Executable": "/bin/ls",

"Arguments": ["-l", "-t"],

"Environment": ["PATH=/bin:$PATH", "FOO=bar"],

}

4.4. Job description format 77

UNICORE Docs

4.4.2.4 Argument sweeps

To create a sweep over an Argument setting by replacing the value by a sweep specification. This can be either a simple
list:

"Arguments": [
{ "Values": ["-o 1", "-o 2", "-o 3"] },
],

or a range:

"Arguments": {
"-o", { "From": "1", "To": "3", "Step" : "1" },
},

where the From, To and Step parameters are floating point or integer numbers.

4.4.2.5 Application parameters

In UNICORE, parameters for applications are often transferred in the form of environment variables. For example,
the POVRay application has a large set of parameters to specify image width, height and many more. You can specify
these parameters in a very simple way using the Parameters keyword:

{
"ApplicationName": "POVRay",

"Parameters": {
"WIDTH": "640",
"HEIGHT": "480",
"DEBUG": "",
},

}

Note that an empty parameter (which does not have a value) needs to be written with an explicit empty string due to
the limitations of the JSON syntax.

4.4.2.6 Parameter sweeps

You can sweep over application parameters by replacing the parameter value by a sweep specification. The replacement
can be either a simple list:

"Parameters": {
"WIDTH": { "Values": ["240", "480", "960"] },
},

or a range:

"Parameters": {
"WIDTH": { "From": "240", "To": "960", "Step": "240" },
},

where the From, To and Step parameters are floating point or integer numbers.

78 Chapter 4. User Documentation

UNICORE Docs

4.4.2.7 Pre- and postprocessing

In addition to the main executable (or application), a UNICORE job can contain pre- and/or postprocessing tasks that
are run before / after the main executable.

The main elements for this are

• User precommand - this will be run after the data stage-in and before the main executable

• User postcommand - this will be run after the main executable and before starting to stage-out data

For example

{
"User precommand": "./preprocessing.sh",

"Executable": "./main.sh",

"User postcommand": "./post-processing.sh"

}

The pre/post commands will be run on a login node by default. Failure of the pre/post commands will cause the job to
fail.

The default behaviour can be modified via the following options:

• RunUserPrecommandOnLoginNode: 'false' - add pre processing as a prolog to the main job script

• UserPrecommandIgnoreNonZeroExitCode - don’t fail the job if the pre command exits with a non-zero exit
code

• Login node - select a preferred login node

and the same for the post command.

4.4.3 Job data management

In general, your job will require data files either from your client machine or from some remote location. Also, result
files and other output files need to be accessible, or need to be exported (staged out) when the user task has finished
executing.

Most of the job data management will be handled via the job’s workspace, which is a unique, per-job directory that
UNICORE creates when the job is submitted, and that is linked to the job. The job directory can be accessed at any
time during the job’s life time.

4.4.3.1 Jobs without client-controlled stage in

Some jobs require additional files from the client machine to be uploaded before the user task can be started.

Uploading LOCAL files is the responsibility of the client! Make sure to read the client documentation for more infor-
mation on this topic.

To tell UNICORE/X that the client does not wish to send any local files, use the flag

"haveClientStageIn": "false",

Otherwise, the server will wait for an explicit start command (see the REST API spec for details) before submitting /
executing the user task.

4.4. Job description format 79

UNICORE Docs

4.4.3.2 Importing files into the job workspace

To import (i.e. stage in) files from remote sites to the job’s working directory on the remote UNICORE server, there’s
the Imports keyword. Here is an example of Imports section which demonstrates some of the possibilities.

{
"Imports": [
{
"From": "UFTP:https://gw:8080/DEMO-SITE/rest/core/storages/HOME/files/testfile",
"To": "testfile"

},
{
"From": "link:/work/data/testfile",
"To": "linked-file"

},
{
"From": "link:/work/data/testfile",
"To": "copied-file"

}
]

}

An Import can have the following elements.

{
"From": "source-url",
"To": "target-path",
"FailOnError": "true | false",
"Permissions": "unix-style-rwx-permissions",
"Credentials": { },
"ExtraParameters": { },
"Mode": "overwrite | append | nooverwrite",

}

The mandatory From element is a URL denoting the source of the file(s). UNICORE knows the following stage-in
protocols:

• https:// : download a file from an HTTP(s) server (UNICORE will try to guess whether the HTTP URL refers
to a UNICORE file or not)

• file:// : copy file(s) residing on the remote machine into the job dir

• link:// : symlink a file/dir residing on the remote machine into the job dir

• ftp:// : download a file from an FTP server

• git: : download the files from the given git repository

• inline:// : ascii data is given directly, see below

The mandatory To element is the target path. As usual in UNICORE, this is relative to the base directory of the storage
endpoint, in this case the job working directory. You can import into sub-directories, if these do not exist, they will be
created as needed.

The optional flag FailOnError lets you you control if the job should continue even if an import operation fails. To do
that, set this flag to false:

80 Chapter 4. User Documentation

UNICORE Docs

{
"From": "/work/data/fileName",
"To": "fileName",
"FailOnError": "false",

}

The optional Permissions element allows you to explicitely set file permissions.

{
"From": "/work/data/fileName",
"To": "myscript.sh",
"Permissions": "r-xr--r--"

}

(An abbreviated version like “r-x” also works).

The optional Mode element has three valid options: “overwrite” (default) will simply write the file. “append” will
append if existing, and “nooverwrite” will fail if the file already exists.

The optional Credentials element can hold e.g. a required username/password and is discussed below.

The optional ExtraParameters element is used for protocol-specific extra settings.

4.4.3.3 Using inline data to import a file into the job workspace

For short import files, it can be convenient to place the data directly into the job description, which can speed up and
simplify the job submission process.

Here is an example:

{
"To": "myscript.sh",
"Data": [

"this is some test data",
"multi line data",
"another line"

]
}

In this case, the From URL is not needed. If you give one, it has to start with inline://, the rest is not important.

Make sure to properly escape any special characters.

4.4.3.4 Staging in from git

You can stage-in a git repository, optionally allowing you to choose a particular commit, and to pass any required
credentials.

For example

{
"From": "git:https://github.com/github/testrepo.git",
"To": "testrepo",
"ExtraParameters": {
"commit" : "26fc7091"

(continues on next page)

4.4. Job description format 81

UNICORE Docs

(continued from previous page)

},
"Credentials": {
"Password" : "some_api_token",
"Username" : "test"

}
}

If the git repo contains any submodules, these will be downloaded as well.

Please note that this operation will not result in a functional git repo, only the files will be downloaded.

4.4.3.5 Sweeping over a stage-in file

You can also sweep over files, i.e. create multiple batch jobs that differ by one imported file. To achieve this, replace
the From parameter by list of values, for example:

{
"From": [

"https://gw:8080/DEMO-SITE/rest/core/storages/HOME/files/file1",
"https://gw:8080/DEMO-SITE/rest/core/storages/HOME/files/file2",
"https://gw:8080/DEMO-SITE/rest/core/storages/HOME/files/file3",

],
"To": "fileName"

}

Note that only a single stage-in can be sweeped over in this way, and that this will not work with files imported from
your local client machine.

4.4.4 Exporting result files from the job workspace

To export files from the job’s working directory to remote storages, use the Exports keyword.

Note: Depending on the client, additional options exist, such as downloading files to your local machine.

Here is an example:

{
"Exports": [
{
"From": "stdout",
"To": "https://gw:8080/DEMO-SITE/rest/core/storages/HOME/files/results/myjob/

→˓stdout"
},
{
"From": "results.dat",
"To": "https://gw:8080/DEMO-SITE/rest/core/storages/HOME/files/results/myjob/

→˓results.dat"
},

]
}

82 Chapter 4. User Documentation

UNICORE Docs

An Export can have the following elements.

{
"From": "file-path",
"To": "target-URL",
"FailOnError": "true | false",
"Credentials": { },
"ExtraParameters": { },

}

The mandatory To element is a URL denoting the target of the export. UNICORE knows the following stage-out
protocols:

• https:// : upload a file to an HTTP(s) server (UNICORE will try to guess whether the HTTP URL refers to a
UNICORE server or not)

• file:// : copy file(s) from the job dir to another directory on the remote machine

• ftp:// : upload a file to an FTP server

4.4.4.1 Specifying credentials for data staging

Some data staging protocols supported by UNICORE require credentials such as username and password.

To pass username and password to the server, the syntax is as follows:

{
"From": "ftp://someserver:25/some/file",
"To": "input_data",
"Credentials": {
"Username": "myname",
"Password": "mypassword"

}
}

and similarly for exports.

You caan specify Token value for HTTPS data transfers, which will go into an HTTP “Authorization: Token . . . ” header

{
"From": "https://someserver/some/file",
"To": "input_data",
"Credentials": {
"Token": "some_token"

}
}

You may also specify an OAuth Bearer token for HTTPS data transfers, which will go into an HTTP “Authorization:
Bearer . . . ” header

{
"From": "https://someserver/some/file",
"To": "input_data",
"Credentials": {
"BearerToken": "some_token"

(continues on next page)

4.4. Job description format 83

UNICORE Docs

(continued from previous page)

}
}

You can leave the token value empty, set to “”, if the server already has a valid Bearer token by some other means (e.g.
from the incoming job submission call).

4.4.5 Redirecting standard input

If you want to have your application or executable read its standard input from a file, you can use the following

"Stdin": "filename",

then the standard input will come from the file named filename in the job working directory.

4.4.6 Resources

For batch jobs, you will want to control the resources allocated to your job. If you don’t do this, UNICORE will use
the default settings configured by the site.

4.4.6.1 Specifying resources

Resources are requested using a Resources section:

{
"Resources": {

"Queue" : "fast",
"Runtime": "12h",
"Nodes": "8"

}
}

UNICORE has the following built-in resource names:

Resource name Description
Runtime Job runtime (wall time) (in seconds, use “min”, “h”, “d” for other units)
Queue Batch system queue (partition) to use
Nodes Number of nodes
TotalCPUs Total number of CPUs
CPUsPerNode Number of CPUs per node
GPUsPerNode Number of GPUs per node
Memory Memory per node
Reservation Reservation ID
NodeConstraints Node constraints
QoS Batch system QoS
Exclusive Request exclusive use of the allocated node(s)

Sites may define additional, custom resources, which you can use, too.

84 Chapter 4. User Documentation

UNICORE Docs

4.4.6.2 Specifying an accounting project

If the system you’re submitting to requires a project name for accounting purposes, you can specify the account (or
project) you want to charge the job to using the Project element:

"Project" : "my_project",

(putting the “Project” into the “Resources” element will work, too)

4.4.7 Miscellaneous options

4.4.7.1 Umask

The umask controls the permissions of files created by the job and any processes that are launched from it. UNICORE’s
default will usually be “077” if not otherwise conigured. If you want to change the initial umask value, you can use the
Umask keyword, e.g.

"Umask": "022",

(the value will interpreted as an octal string)

4.4.7.2 Job tags

To set job tags that help you find / filter jobs later, use the Tags keyword

"Tags": ["production", "train1", "my_tag"],

4.4.7.3 Specifying a URL for receiving notifications

The UNICORE/X server can send out notifications when the job enters the RUNNING and/or DONE state.

"Notification" : "https://your-service-url",

UNICORE/X will send an authenticated HTTPS POST message to this URL, with JSON content.

{
"href" : "https://unicore-url/rest/core/jobs/job-uuid",
"status" : "RUNNING",
"statusMessage" : ""

}

The status field will be RUNNING when the user application starts executing, and SUCCESSFUL / FAILED when the
job has finished.

{
"href" : "https://unicore-url/rest/core/jobs/job-uuid",
"status" : "SUCCESSFUL",
"statusMessage" : "",
"exitCode" : 0

}

4.4. Job description format 85

UNICORE Docs

Do not expect realtime behaviour here, as UNICORE has a certain delay (typically 30 to 60 seconds, depending on the
server configuration) until noticing job status changes on the batch system.

If you want to verify that the sender of the notification is really UNICORE/X, you will need to check and validate the
JWT Bearer token UNICORE/X sends in the Authorization header.

4.4.7.4 Advanced notification settings (UNICORE 9.2.0 and later)

By default, UNICORE will send notifications when the job enters RUNNING state or is done, and the status changes to
SUCCESSFUL or FAILED.

For special use cases, you may need to use more detailed notification settings, for example when

• you want notifications on certain low-level (e.g. Slurm level) status changes

• you want notifications on more or other UNICORE-level status changes.

This advanced notification setup looks like this:

{
"NotificationSettings" : {
"URL": "https://your-service-url",
"status": ["STAGINGOUT", "SUCCESSFUL"],
"bssStatus": ["CONFIGURING"]

}
}

where status is a list of UNICORE-level status strings, and bssStatus is a list of BSS-level status strings. If status
is not given explicitly, the default (RUNNING, SUCCESSFUL, FAILED) are used.

The notifications sent by UNICORE contain the href job URL, and either a bssStatus field, or a status, depending
on what triggered the notification message.

4.4.7.5 Specifying the job name

The job name can be set simply by

"Name": "Test job",

4.4.7.6 Specifying the user email for batch system notifications

Some batch systems support sending email upon completion of jobs. To specify your email, use

"User email": "foo@bar.org",

86 Chapter 4. User Documentation

UNICORE Docs

4.5 Workflow description

4.5.1 Introduction

This chapter provides an overview of the JSON workflow description that is supported by the Workflow engine. It will
allow you to write workflows by hand, i.e. without using tools such as the Java or Python APIs.

After presenting all the constructs individually, several complete examples are given in Examples.

4.5.2 Overview and simple constructs

The overall workflow document has the following form

{
"inputs": {},

"activities": {},

"subworkflows": {},

"transitions": [],

"variables": [],

"notification": "optional_notification_url",

"tags": ["tag1", "tag2", "..."],
}

Activities, sub-workflows and transitions make up the workflow logic.

Both activities and sub-workflows are JSON maps (since UNICORE 9.0), where the key is the unique identifier of the
element. The 8.x format of using JSON arrays with id elements is still supported.

Here is a simple example of two tasks that are to be run in a sequence:

{
"activities": {

"step1": {
"job": {
"Executable": "echo step1",

}
},

"step2": {
"job": {
"Executable": "echo step2",

}
},

},

"transitions": [
(continues on next page)

4.5. Workflow description 87

UNICORE Docs

(continued from previous page)

{"from": "step1", "to": "step2" }
]

}

The remaining elements in the workflow description are:

• inputs allows to register external files with the workflow file catalog. See Data handling.

• tags is an optional list of initial tags, that can later be used to conveniently filter the list of workflows.

• notification (optional) denotes an URL to where UNICORE Workflow server will send a POST notification
(authenticated via a JWT token signed by the Workflow server) when the workflow has finished processing.

Notification messages sent by the Workflow service have the following content:

{
"href" : "workflow_url",

"group_id": "id of the workflow or sub-workflow",

"status": "...",

"statusMessage": "..."
}

Both of these are analogous to their conterparts for single jobs in UNICORE.

In the next sections the elements of the workflow description will be discussed in detail.

4.5.3 Activities

Activity elements have the following form:

"id": {
"type": "...",

...
}

The id must be UNIQUE within the workflow. There are different types of activity, which are distinguished by the
type element.

• START denotes an explicit start activity. If no such activity is present, the processing engine detect the proper
starting activities.

• JOB denotes a executable (job) activity. In this case, the job sub element holds the JSON job definition (if a job
element is present, you may leave out the type).

• MODIFY_VARIABLE allows to modify a workflow variable. An option named variable_name identifies the vari-
able to be modified, and an option expression holds the modification expression in the Groovy programming
language syntax (see also the variables section later).

• SPLIT: this activity can have multiple outgoing transitions. All transitions with matching conditions will be
followed. This is comparable to an “if() . . . if() . . . if()” construct in a programming language.

• BRANCH: this activity can have multiple outgoing transitions. The transition with the first matching condition will
be followed. This is comparable to an “if() . . . elseif() . . . else()” construct in a programming language.

• MERGE merges multiple flows without synchronising them.

88 Chapter 4. User Documentation

UNICORE Docs

• SYNCHRONIZE merges multiple flows and synchronises them.

• HOLD stops further processing of the current flow until the client explicitly sends a continue message.

4.5.4 Subworkflows

The workflow description allows nested sub workflows, which have the same formal structure as the main workflow
(without the tags and inputs). There is an additional type element that is used to distinguish the different control
structure types.

{

"id": "unique_id",

"type": "...",

"variables": [],

"activities": {},

"subworkflows": {},

"transitions": [],

"notification" : "optional_notification_url",

}

4.5.5 Job activities

Job activities are the basic executable pieces of a workflow. The embedded JSON job definition will be sent to an
execution site (UNICORE/X) for processing.

{
"id": "unique_id",

"type": "job",

"job": {

"... standard UNICORE job ...": ""

},

"options": { },
}

The execution site is specified by the optional Site name element in the job

{
"id": "unique_id", "type" : "job",

(continues on next page)

4.5. Workflow description 89

UNICORE Docs

(continued from previous page)

"job": {

"Site name": "DEMO-SITE",

},
}

Note: There is currently no form of brokering in place, it is up to the user to select an execution site.

The job description is covered in detail in Job description format.

The processing of the job can be influenced using the (optional) options sub-element. Currently the following options
(key-value) can be used:

• IGNORE_FAILURE if set to true, the workflow engine will ignore any failure of the task and continue processing
as if the activity had been completed successfully.

Note: This has nothing to do with the exit code of the actual UNICORE job! Failure means for example data
staging failed, or no matching target system for the job could be found.

• MAX_RESUBMITS set to an integer value to control the number of times the activity will be retried. By default,
the workflow engine will re-try three times (except in those cases where it makes no sense to retry).

For example,

{
"id": "unique_id",

"job" : {

... standard UNICORE job ...

},

"options": { "IGNORE_FAILURE": "true", },
}

If you need to pass on user preferences to the site, e.g. for selecting your primary group, or choosing between multiple
user IDs, you can specify this in the job element like this:

...

"job": {

"User prefences": {
"uid": "hpcuser21",
"group": "hpc",

}

}
...

90 Chapter 4. User Documentation

UNICORE Docs

where the allowed field names are role, uid, group and supplementaryGroups.

4.5.6 Data handling

One of the most common tasks is linking the output of one activity to another activity for further processing. The
UNICORE workflow system supports this by providing a per-workflow file catalog, where jobs can reference files with
special URIs starting with wf:.

Jobs can register outputs with the file catalog using stage-out directives, for example,

Exports: [
{ "From": "stdout", "To": "wf:step1_stdout" }

]

will register the stdout file under the name wf:step1_stdout (note that the file will not be copied anywhere).

Later jobs can reference files from the catalog using stage-in directives, for example,

Imports: [
{ "From": "wf:step1_stdout", "To": "input_file" }

]

The workflow engine will take care of resolving the wf:... reference to the actual physical location.

Apart from registration of files in jobs, the user can also manually register files using the inputs section of the main
workflow:

"inputs": {
"wf:input_data_1": "https://some_storage/somefile.pdf",
"wf:input_params": "https://some_storage/parameters.txt"

}

For an example of a workflow, have a look at Simple two-step workflow with data dependency.

The Workflow REST API allows you to list (and modify) the file catalog via the BASE/{id}/files endpoint.

4.5.7 Transitions and conditions

The basic flow of control in a workflow is handled using transition elements. These reference from and to activities
or subflows, and may have conditions attached. If no condition is present, the transition is followed unconditionally,
otherwise the condition is evaluated and the transition is followed only if the condition matches (i.e. evaluates to true).

The syntax for a Transition is as follows:

{

"from" : "from_id",

"to" : "to_id",

"condition": "expression"

}

4.5. Workflow description 91

UNICORE Docs

The from and to elements denote activity or subworkflow id’s.

An activity can have outgoing (and incoming) transitions. In general, all outgoing transitions (where the condition
is fulfilled) will be followed. The exception is the Branch activity, where only the first matching transition will be
followed.

The optional condition element is a string-valued expression. The workflow engine offers some pre-defined functions
that can be used in these expressions. For example, you can use the exit code of a job, or check for the existence of a
file within these expressions.

• eval(expr) Evaluates the expression expr in Groovy syntax, which must evaluate to a boolean. The expression
may contain workflow variables.

• exitCodeEquals(activityID, value) Allows to compare the exit code of the UNICORE job associated
with the Activity identified by activityID to value.

• exitCodeNotEquals(activityID, value) Allows to check the exit code of the UNICORE job associated
with the Activity identified by activityID, and check that it is different from value.

• fileExists(activityID, fileName) Checks that the working directory of the UNICORE job associated
with the given Activity contains a file fileName.

• fileLengthGreaterThanZero(activityID, fileName) Checks that the working directory of the UNI-
CORE job associated with the given Activity contains the named file, which has a non-zero length.

• before(time) and after(time) check whether the current time is before or after the given time (in yyyy-MM-
dd HH:mm format).

• fileContent(activityID, fileName) Reads the content of the named file in the working directory of the
job associated with the given Activity and returns it as a string.

4.5.8 Using workflow variables

Workflow variables need to be declared using an entry in the variables array before they can be used.

{

"name": "...",

"type": "...",

"initial_value": "..."

}

Currently variables of type STRING, INTEGER , FLOAT and BOOLEAN are supported.

Variables can be modified using an activity of type MODIFY_VARIABLE.

For example, to increment the value of the COUNTER variable, the following Activity is used

{

"type": "MODIFY_VARIABLE",

"id": "incrementCounter",

"variable_name": "COUNTER",
(continues on next page)

92 Chapter 4. User Documentation

UNICORE Docs

(continued from previous page)

"expression": "COUNTER += 1;"

}

The expression contains an expression in Groovy syntax (which is very close to Java).

The workflow engine will replace variables in job data staging sections and environment definitions, allowing to inject
variables into jobs. Examples for this mechanism will be given in the Examples section.

4.5.9 Loop constructs

Apart from graphs constructed using activity and transition elements, the workflow system supports special
looping constructs, for-each, while and repeat-until, which allow to build complex workflows.

4.5.9.1 While and repeat-until loops

These allow to loop a certain part of the workflow while (or until) a condition is met. A while loop looks like this

{
"id": "while_example",

"type" : "WHILE",

"variables" : [
{

"name": "C",
"type": "INTEGER",
"initial_value": "1",

}
],

"body":
{
"activities": {
"task" : {

"job": { ... }
},
"mod": {

this modifies the variable used in the 'while'
loop's exit condition
"type": "MODIFY_VARIABLE",
"variable_name": "C",
"expression": "C++;",

}
},

"transitions: [
{"from": "task", "to": "mod"}

]
},

(continues on next page)

4.5. Workflow description 93

UNICORE Docs

(continued from previous page)

"condition": "eval(C<5)",

}

The necessary ingredients are that the loop’s body modifies the loop variable (“C” in the example), and the exit condi-
tion eventually terminates the loop.

For a full workflow example, see While loop example using workflow variables.

Completely analogously to the while loop, a repeat-until loop is constructed, the only syntactic difference is that the
subworkflow now has a different type element:

{
"id": "repeat_example",

"type": "REPEAT_UNTIL",

...
}

Semantically, the repeat-loop will always execute the body at least once, since the condition is checked after executing
the body, while in the while case, the condition will be checked before executing the body.

4.5.9.2 For-each loop

The for-each loop is a complex and powerful feature of the workflow system, since it allows parallel execution of the
loop body, and different ways of building the different iterations. Put briefly, one can loop over variables (as in the
while and repeat-until case), but one can also loop over enumerated values and (most importantly) over file sets.

The basic syntax is:

{
"id": "for_each_example",

"type": "FOR_EACH",

"iterator_name": "IT",

"body": {

},

define range to loop over

"values": [...],

OR variables

"variables": [...],

OR files

(continues on next page)

94 Chapter 4. User Documentation

UNICORE Docs

(continued from previous page)

"filesets": [...],

with optional chunking
"chunking":

}

The iterator_name element allows to control how the loop iterator variable is to be called, by default it is named IT.

4.5.9.3 The values element

Using value, iteration over a fixed set of strings can be defined. The main use for this is parameter sweeps, i.e. executing
the same job multiple times with different arguments or environment variables.

"values": ["1", "2", "3",],

The following variables are set where IT is the loop iterator_name defined in the for group as shown above:

• IT is set to the current iteration index (1, 2, 3, . . .)

• IT_VALUE is set to the current value

4.5.9.4 The variables element

The variables element allows to define the iteration range using one or more variables, similar to a for-loop in a
programming language.

"variables: [
{
"variable_name": "X",
"type": "INTEGER",
"start_value": "0",
"expression": "Y++",
"end_condition": "Y<2"

},
{
"variable_name": "Y",
"type": "INTEGER",
"start_value": "0",
"expression": "Y++",
"end_condition": "Y<2"

}
],

The sub-elements should be self-explanatory.

Note that you can use more than one variable range, allowing you to quickly create things like parameter studies.

The following variables are set where IT is the loop iterator_name defined in the for group as shown above:

• IT is set to the current iteration index (1, 2, 3, . . .)

• IT_VALUE is set to the current value

4.5. Workflow description 95

UNICORE Docs

4.5.9.5 The file_sets element

This variation of the for-each loop, allows to loop over a set of files, optionally chunking together several files in a
single iteration.

The basic structure of a file set definition is this:

"file_sets": [

{
"base": "...",
"include": ["..."],
"exclude": ["..."],
"recurse": "true|false",
"indirection": "true|false",

},

]

The base element defines a base of the filenames, which will be resolved at runtime, and complemented according to
the include and/or exclude elements. The recurse attribute allows to control whether the resolution should be done
recursively into any subdirectories. The indirection attribute is explained below.

For example, to recursively collect all PDF files (except two files named unused*.pdf) in a certain directory on a storage:

"file_sets": [

{
"base": "https://mysite/rest/core/storages/my_storage/files/pdf/</s:Base>
"include": ["*.pdf"],
"exclude": ["unused1.pdf", "unused2.pdf",],
"recurse": "true"

}

]

The following variables are set where IT is the loop iterator_name defined in the for group as shown above:

• IT is set to the current iteration index (1, 2, 3, . . .)

• IT_VALUE is set to the current full file path

• IT_FILENAME is set to the current file name (last element of the path)

4.5.9.6 Indirection

Sometimes the list of files that should be looped over is not known at workflow design time, but will be computed
at runtime. Or, you wish simply to list the files in a file, and not put them all in your workflow description. The
indirection attribute on a FileSet allows to do just that. If indirection is set to true, the workflow engine will
load the given file(s) in the fileset at runtime, and read the actual list of files to iterate over from them. As an example,
you might have a file filelist.txt containing a list of UNICORE file URLs:

https://someserver/file1
https://someserver/fileN
...

96 Chapter 4. User Documentation

UNICORE Docs

and the fileset

{
"indirection": "true",
"base": "https://someserver/rest/core/storages/mystorage/files/</s:Base>
"include": ["filelist.txt"],

}

You can have more than one file list.

4.5.9.7 Chunking

Chunking allows to group sets of files into a single iteration, for example for efficiency reasons.

A chunk is either a certain number of files, or a set of files with a certain total size.

"chunking": {
"chunksize": ... ,
"type": "NORMAL|SIZE",
"filename_format": "...,
"expression": "... formula to compute chunksize ...",
}

The chunksize element is either the number of files in a chunk, or (if type is set to SIZE) the total size of a chunk in
kbytes.

For example,

• To process 10 files per iteration:

"chunking":
{
"chunksize": "10",

}

• To process 2000 kBytes of data per iteration:

"chunking":
{
"chunksize": "2000",
"type": "SIZE"

}

The chunksize can also be computed at runtime using the expression given in the optional expression element. In
the expression, two special variables may be used. The TOTAL_NUMBER variable holds the total number of files iterated
over, while the TOTAL_SIZE variable holds the aggregated size of all files in kbytes. The script must return an integer-
valued result. The type element is used to choose whether the chunk size is interpreted as number of files or data
size.

For example, to choose a larger chunksize if a certain total file size is exceeded:

"chunking": {
"expression": "if(TOTAL_SIZE>50*1024)return 5*1024 else return 2048;"
"type": "SIZE"

}

4.5. Workflow description 97

UNICORE Docs

The optional filename_format allows to control how the individual files (which are staged into the job directory)
should be named. By default, the index is prepended, i.e. an import statement like

"Imports": [{ "From": "${IT_VALUE}", "To" : "infile.txt" }]

would result in 1_infile.txt to N_infile.txt in each chunk. In the filename_format pattern you can use the variables
{0}, {1} and {2}, which denote the index, filename without extension and extension respectively.

{0} = 1, 2, 3, ...
{1} = "infile"
{2] = "txt"

For example, if you have a set of PDF files, and you want them to be named file_1.pdf to file_N.pdf, you could use the
pattern:

"filename_format": "file_{0}.pdf"

which would ignore the original filename in the To field completely. Or, if you prefer to keep the existing extensions,
but append an index to the name, use

"filename_format": "{1}{0}.{2}"

which would result in filenames like below:

inputfile1.txt
inputfile2.txt
...

You can also keep the original filenames by setting:

"Imports": [{ "From": "${IT_VALUE}", "To" : "${IT_ORIGINAL_FILENAME}"}]

The following variables are set where IT is the loop iterator_name defined in the for group as shown above:

• IT is set to the current iteration index (1, 2, 3, . . .)

• IT_VALUE is set to the current full file path

• IT_ORIGINAL_FILENAME_x is set to the current file name (last element of the path)

• IT_ORIGINAL_FILENAMES is set to a “;”-separated list of all the file names (last elements of the paths) in the
current chunk

4.5.10 Examples

This section collects a few simple example workflows. They are intended to be submitted using UNICORE Comman-
dline Client.

98 Chapter 4. User Documentation

UNICORE Docs

4.5.10.1 Simple two-step workflow with data dependency

This example shows how to link output from one task to the input of another task using the internal file catalog.

The first task, step1, registers its stdout with the file catalog under the name wf:step1_out, and the second task,
step2, pulls that file in for further processing.

{
"activities": {

"step1": {
"job": {
"ApplicationName": "Date",
"Exports": [
{"From": "stdout", "To": "wf:step1_out"}

]
}

},

"step2": {
"job": {
"Executable": "md5sum",
"Arguments": ["infile"],
"Imports": [
{ "From": "wf:step1_out", "To": "infile"}

]
}

}

},

"transitions": [
{"from": "step1", "to": "step2" }

]
}

4.5.10.2 Simple diamond graph

This example shows how to use transitions for building simple workflow graphs. It consists of four Date jobs arranged
in a diamond shape, i.e. date2a and date2b are executed (more or less) simultaneously.

{
"activities": {

"date1": {
"job": { "ApplicationName": "Date" }

},

"date2a": {
"job": { "ApplicationName": "Date" }

},

"date2b": {
(continues on next page)

4.5. Workflow description 99

UNICORE Docs

(continued from previous page)

"job": { "ApplicationName": "Date" }
},

"date3": {
"job": { "ApplicationName": "Date" }

}

},

"transitions": [
{"from": "date1", "to": "date2a" },
{"from": "date1", "to": "date2b" },
{"from": "date2a", "to": "date3" },
{"from": "date2b", "to": "date3" }

]
}

4.5.10.3 Conditional execution in an if-else construct

Transitions from one activity to another may be conditional, which allows all sorts of if-else constructs. Here is a simple
example:

{

"activities": {

"branch": { "type": "BRANCH" },

"if-job": {
"job": { "ApplicationName": "Date" }

},

"else-job": {
"job": { "ApplicationName": "Date" }

}

},

"transitions": [
{"from": "branch", "to": "if-job", "condition": "2+2==4"},
{"from": "branch", "to": "else-job" }

]

}

Here we use the BRANCH activity which will only follow the first matching transition.

100 Chapter 4. User Documentation

UNICORE Docs

4.5.10.4 While loop example using workflow variables

The next example shows some uses of workflow variables in a while loop. The loop variable C is copied into the job’s
environment. Another possible use is to use workflow variables in data staging sections, for example to name files.

{

"activities":{},

"subworkflows": {

"while-example": {

"type": "WHILE",

"variables": [
{

"name": "C",
"type": "INTEGER",
"initial_value": "0"

}
],

"condition": "C<5",

"body": {

"activities": {

"job": {
"job": {

"Executable": "echo",
"Arguments": ["$TEST"],
"Environment": ["TEST=${C}"],
"Exports": [
{ "From": "stdout", "To": "wf:/out_${C}" }

]
}

},

"mod": {
"type": "MODIFY_VARIABLE",
"variable_name": "C",
"expression": "C++"

}

},

"transitions": [
{"from": "job", "to": "mod" }

]
}

(continues on next page)

4.5. Workflow description 101

UNICORE Docs

(continued from previous page)

}

}

}

4.5.10.5 For-each loop example

The next example shows how to use the for-each loop to loop over a set of files. The jobs will stage-in the current file.
Also, the name of the current file is placed into the job environment.

{

"subworkflows": {

"for-example": {
"type": "FOR_EACH",
"iterator_name": "IT",

"body":
{

"activities": {

"job": {
"id": "job",
"job": {
"Executable": "echo",
"Arguments": ["processing: ", "$NAME"],
"Environment": ["NAME=${IT_FILENAME}"],
"Imports": [
{"From": "${IT_VALUE}", "To": "infile"}

],
"Exports": [
{"From": "stdout", "To": "wf:/out_${IT}"}

]
}

}

},

},

"filesets": [
{

"base": "https://mygateway.de:7700/MYSITE/rest/core/storages/my_storage/
→˓",

"include": ["*"],
}

]

}
(continues on next page)

102 Chapter 4. User Documentation

UNICORE Docs

(continued from previous page)

}

}

4.6 Data-triggered processing

This document describes UNICORE’s data-triggered, rule-oriented processing feature.

4.6.1 What is data-triggered processing?

UNICORE can be set up to automatically scan storages and trigger processing steps (e.g. submit batch jobs or run
processing tasks) according to user-defined rules.

This style of processing is storage-oriented, i.e. is defined by the properties of a UNICORE storage endpoint, and by
files accessible on that storage endpoint.

4.6.2 Setting up data-triggered processing

Depending on the server configuration, data triggered processing is probably disabled on the standard storages (HOME,
ROOT, etc).

If the UNICORE server provides a “storage factory” service, you can create an endpoint with data-triggered processing
enabled, and you can select the path

For example using UCC:

ucc create-storage path=/path/to/your/directory enableTrigger=true

4.6.3 Controlling the scanning process

To control which directories should be scanned, a file named .UNICORE_Rules at the top-level of the storage is read
and evaluated. This file can be (and usually will be) edited and uploaded by the user. It can be modified at any time.

The file is expected to be in JSON format, and has the following elements:

{
"DirectoryScan": {

"IncludeDirs": [
"project.*"

],
"ExcludeDirs": [

"project42"
],
"Interval": "30"

},
(continues on next page)

4.6. Data-triggered processing 103

UNICORE Docs

(continued from previous page)

"Rules": [],

"Enabled": "true | false",

"Logging": "true | false"

}

The IncludeDirs and ExcludeDirs are lists of Java regular expression strings that denote directories (as always
relative to the storage root) that should be included or excluded from the scan.

The optional Interval element allows you to control the scan interval. A numerical value (seconds), or a time value
with unit such as “1h” can be used here.

The optional Enabled element allows you to (temporarily) disable the processing, if you wish.

The optional Logging element allows you to disable the writing of log files. Logging is enabled by default, see below.
Log files will be written to a directory .UNICORE_data_processing in the base directory of the storage endpoint.

The Rules section controls which files are to be processed, and what is to be done (actions). This is described below.

4.6.3.1 Rules

The Rules section in the .UNICORE_Rules file is a list of file match specifications together with a definition of an
action, i.e. what should be done for those files that match.

The general syntax is:

{
"DirectoryScan": {
"IncludeDirs": [],
"ExcludeDirs": []

},

"Rules": [
{
"Name": "example",
"Match": ".*incoming/file_.*",
"Action": { }

}
]

}

The mandatory elements are:

• Name : the name of the rule. This is useful when checking the logfiles.

• Match : a regular expression defining which file paths (relative to storage root) should be processed.

• Action : the action to be taken.

104 Chapter 4. User Documentation

UNICORE Docs

4.6.3.1.1 Variables

The following variables can be used in the Action description:

• UC_BASE_DIR : the storage root directory

• UC_CURRENT_DIR : the absolute path to the parent directory of the current file

• UC_FILE_PATH : the full path to the current file

• UC_FILE_NAME : the file name

• UC_FILES : (batched actions only) all the newly detected files, relative to the base directory

4.6.3.1.2 Job action

This type of action will be executed for a single new file, and defines a UNICORE job in the usual job description
syntax.

"Action":
{
"Job": { ... }

}

The Job element contains a UNICORE job in the usual job description syntax.

4.6.3.1.3 Batched job action

This type of action will be executed for a whole set of newly detected files.

"Action":
{
"BatchedJob": { ... }

}

The BatchedJob element contains a UNICORE job in the usual job description syntax.

4.6.3.1.4 Metadata extraction

"Action":
{
"Extract": { ... }

}

This action will extract metadata from all the newly detected files. The contents of the Extract element are currently
unused.

4.6. Data-triggered processing 105

UNICORE Docs

4.6.3.1.5 Sending notifications

"Action":
{
"Notification": "https://url-to-notification-receiver"

}

This action will send out a HTTP POST request in JSON format to the specified URL. The JSON will contain infor-
mation about the new files, as well as the base directory that is being watched.

An example notification could look like this:

{
"href": "https://unicorex-server-url/rest/core",
"directory": "/path/to/watched/directory",
"files": [
"/path-to-new-file1",
"/path-to-new-file2"

]
}

(File paths are relative to the base directory!)

4.6.3.2 Logging

If new files are detected, and rules are executed, the server will write a short log file to a directory “.UNI-
CORE_data_processing”.

4.6.4 Stopping the processing

Since data-triggered processing is tied to the storage instance, you can stop it by sending an empty REST POST to an
URL on the storage, e.g.

ucc rest post "{}" 'storage-URL'/actions/stop-processing

Destroying the storage instance will also stop the processing (but not delete any files).

ucc rest delete "{}" 'storage-URL'

4.6.5 Example

As an example, we setup a task that generates checksums for all new files that are detected in the incoming directory.

The .UNICORE_Rules file could look like this:

{
"DirectoryScan": {
"IncludeDirs": [

"incoming"
],

},
(continues on next page)

106 Chapter 4. User Documentation

UNICORE Docs

(continued from previous page)

"Rules": [
{
"Name": "generate-hash",
"Match": ".*",
"Action": {
"Job": {
"Executable": "sha256sum ${UC_FILE_PATH}",
"Exports": [

{
"From": "stdout",
"To": "file://${UC_BASE_DIR}/checksums/${UC_FILE_NAME}.sha"

}
]

}
}

}
]

}

4.6. Data-triggered processing 107

UNICORE Docs

108 Chapter 4. User Documentation

CHAPTER

FIVE

ADMINISTRATOR DOCUMENTATION

• Gateway An optional server component that provides a reverse https proxy, allowing you to run several backend
servers (UNICORE/X, Registery, . . .) behind a single address.

• UNICORE/X The central server component of a typical UNICORE installation that provides REST APIs for job
management and data access services for a single compute cluster (or just a file system).

• TSI The Target System Interface (TSI) server is used to interface to a resource manager such as Slurm and to
access files on the cluster.

• XUUDB An optional service, that is best suited as a per-site service, providing attributes for multiple
UNICORE/X-like services at a site. The XUUDB maps a UNICORE user identity (which is formally
an X.500 distinguished name (DN)) to a set of attributes which are typically used to provide local account
details (uid, gid(s)) and commonly also to provide authorization information, i.e. the user’s role.

• Workflow Service provides advanced workflow processing capabilities using UNICORE resources. The Work-
flow service provides graphs of activities including high-level control constructs (for-each, while, if-then-
else, etc.), and submits and manages the execution of single UNICORE jobs.

• Registry The Registry server is a specially configured UNICORE/X server which provides the information about
available services to clients and other services.

• UFTPD The UNICORE File Transfer Server for high performance data transfer.

5.1 Gateway

The UNICORE Gateway is an (optional) server component that provides a reverse https proxy, allowing you to run
several backend servers (UNICORE/X, Registry, . . .) behind a single address. This helps with firewall configuration,
requiring only a single open port (a similar effect can be achieved using other http servers that can act as a reverse
proxy, such as Apache httpd or nginx).

The second functionality of the Gateway is (optional) authentication of incoming requests. Connections to the Gateway
are made using SSL, so the Gateway can be configured to check whether the caller presents a certificate issued by a
trusted authority. Information about the client is forwarded to services behind the Gateway in UNICORE proprietary
format (as a HTTP header).

The Gateway will forward the IP address of the client to the back-end server.

Last not least, the Gateway can be configured as a HTTP load balancer.

Gateway Manual Installation and Operating the Gateway.

109

https://uftp-docs.readthedocs.io/en/latest/admin-docs/uftpd/
https://httpd.apache.org/
https://nginx.org

UNICORE Docs

Fig. 5.1: UNICORE Components

Fig. 5.2: UNICORE Gateway Server

110 Chapter 5. Administrator Documentation

UNICORE Docs

5.1.1 Gateway Manual

The Gateway is the entry point into a UNICORE site, routing HTTPS traffic to servers like UNICORE/X. It forwards
client traffic to the intended destination, optionally authenticating the client. The Gateway receives the reply and sends
it back to the client. In this way, only a single open port in a site’s firewall has to be configured.

Attention: LIMITATIONS

The Gateway is not a complete HTTP reverse proxy implementation. For example, it is not possible to run a full,
complex web application behind the Gateway, especially not if protocols like WebSocket are used.

In effect, traffic to a virtual URL, e.g. https://mygateway:8088/Alpha is forwarded to the real URL, e.g.
https://host1:7777.

The mappings of virtual URL to real URL for the available sites are listed in a configuration file connections.
properties. Additionally, the Gateway supports dynamic registration of sites.

The second functionality of the Gateway is (optional) authentication of incoming requests. Connections to the Gateway
are made using SSL, so the Gateway can be configured to check whether the caller presents a certificate issued by a
trusted authority. Information about the client is forwarded to services behind the Gateway in UNICORE proprietary
format (as a SOAP or HTTP header).

The Gateway will forward the IP address of the client to the back-end server.

Last not least, the Gateway can be configured as a HTTP load balancer.

Important: IMPORTANT NOTE ON PATHS

Depending on the installation method, the paths to various Gateway files are different. If installing using a distribution-
specific package the following paths are used:

CONF=/etc/unicore/gateway
BIN=/usr/sbin
LOG=/var/log/unicore/gateway

If installing using the portable bundle all Gateway files are installed under a single directory. Path prefixes then are as
follows, where INST is a directory where the Gateway was installed:

CONF=INST/conf
BIN=INST/bin
LOG=INST/logs

The above variables (CONF, BIN and LOG) are used throughout the rest of this manual.

5.1. Gateway 111

UNICORE Docs

5.1.1.1 Installation

The UNICORE Gateway is distributed in the following formats:

1. As a part of platform independent installation bundle called UNICORE Server bundle. The UNICORE Server
bundle is provided as a tar package and includes a command line installer.

2. As a binary, platform-specific package available currently for RedHat (Centos) and Debian platforms on the
UNICORE project website at sourceforge. Those packages are not tested on all possible platforms, but should
work without any problems with other versions of similar distributions, e.g. SL, Centos, or Fedora.

5.1.1.1.1 Prerequisites

To run, the Gateway requires Java (JRE headless is sufficient) in version 11 or later. We recommend using OpenJDK.

5.1.1.1.2 Installation from the Server bundle

Download the server bundle from the UNICORE project website.

Please review the README file available after extracting the bundle. You don’t have to change any defaults as the Gateway
is installed by default.

You should create and use a system user (e.g. unicore) to install and run the gateway. For security reasons, do not run
the Gateway as the root user.

5.1.1.1.3 Installation from a Linux package (rpm or deb)

Use your distribution’s package manager to install.

5.1.1.2 Upgrading

The general update procedure is presented below, with possible variations:

1. Stop the old Gateway.

2. Update the server package. This step mostly applies for RPM/DEB managed installations. For Quickstart instal-
lation it is enough to replace the *.jar files with the new ones.

3. Start the newly installed Gateway.

4. Verify log file and fix any problems reported.

5.1.1.3 Configuration

The Gateway is configured using a set of configuration files, which reside in the CONF subdirectory.

112 Chapter 5. Administrator Documentation

https://sourceforge.net/projects/unicore/files/Servers/Core/
https://sourceforge.net/p/unicore/wiki/Linux_Repositories/
https://openjdk.java.net/install/
https://sourceforge.net/projects/unicore/files/Servers/Core/

UNICORE Docs

5.1.1.3.1 Java and environment settings: startup.properties

This file contains settings related to the Java VM, such as the Java command to use, memory settings, library paths,
etc.

5.1.1.3.2 Configuring sites: connections.properties

This is a simple list connecting the names of sites and their physical addresses. An example is:

DEMO-SITE = https://localhost:7777
REGISTRY = https://localhost:7778

If this file is modified, the Gateway will re-read it at runtime, so there is no need to restart the Gateway in order to add
or remove sites.

Optionally, an administrator can enable a possibility for dynamic site registration at runtime, see Dynamic registration
of Vsites for details. Then this file should contain only the static entries (or none if all sites register dynamically).

Further options for back-end sites configuration are presented in Using the Gateway for failover and/or loadbalancing
of UNICORE sites.

5.1.1.3.3 Main server settings: gateway.properties

Use the gateway.hostname property to configure the network interface and port the Gateway will listen on. You can
also select between https and http protocol, though in almost all cases https will be used.

Example:

gateway.hostname = https://192.168.100.123:8080

Note: If you set the host to 0.0.0.0, the Gateway will listen on all network interfaces of the host machine, else it will
listen only on the specified one.

If the scheme of the hostname URL is set to https, the Gateway uses the configuration data from security.
properties to configure the HTTPS settings.

Credential and truststore settings

The Gateway credential and truststore is configured using the following properties

5.1. Gateway 113

UNICORE Docs

Table 5.1: Credential settings
Property name Type Default value

/ mandatory
Description

gateway.credential.path filesystem
path manda-

tory

Credential location. In case of ‘jks’, ‘pkcs12’ and
‘pem’ store it is the only location required. In case
when credential is provided in two files, it is the
certificate file path.

gateway.credential.format [jks, pkcs12,
der, pem]

Format of the credential. It is guessed when not
given. Note that ‘pem’ might be either a PEM key-
store with certificates and keys (in PEM format) or
a pair of PEM files (one with certificate and sec-
ond with private key).

gate-
way.credential.password

string Password required to load the credential.

gate-
way.credential.keyPath

string Location of the private key if stored separately
from the main credential (applicable for ‘pem’ and
‘der’ types only),

gate-
way.credential.keyPassword

string Private key password, which might be needed only
for ‘jks’ or ‘pkcs12’, if key is encrypted with differ-
ent password then the main credential password.

gate-
way.credential.keyAlias

string Keystore alias of the key entry to be used. Can be
ignored if the keystore contains only one key entry.
Only applicable for ‘jks’ and ‘pkcs12’.

gate-
way.credential.reloadOnChange

[true, false] true Monitor credential location and trigger dynamical
reload if file changes.

114 Chapter 5. Administrator Documentation

UNICORE Docs

Table 5.2: Truststore settings
Property name Type Default value

/ mandatory
Description

gate-
way.truststore.allowProxy

[ALLOW,
DENY]

ALLOW Controls whether proxy certificates are supported.

gateway.truststore.type [keystore,
openssl, di-
rectory]

manda-
tory

The truststore type.

gate-
way.truststore.updateInterval

integer num-
ber

600 How often the truststore should be reloaded, in
seconds. Set to negative value to disable refresh-
ing at runtime.(runtime updateable)

gate-
way.truststore.directoryConnectionTimeout

integer num-
ber

15 Connection timeout for fetching the remote CA
certificates in seconds.

gate-
way.truststore.directoryDiskCachePath

filesystem
path

Directory where CA certificates should be cached,
after downloading them from a remote source.
Can be left undefined if no disk cache should be
used. Note that directory should be secured, i.e.
normal users should not be allowed to write to it.

gate-
way.truststore.directoryEncoding

[PEM, DER] PEM For directory truststore controls whether certifi-
cates are encoded in PEM or DER. Note that the
PEM file can contain arbitrary number of concate-
nated, PEM-encoded certificates.

gate-
way.truststore.directoryLocations.*

list of prop-
erties with
a common
prefix

List of CA certificates locations. Can con-
tain URLs, local files and wildcard expres-
sions.(runtime updateable)

gate-
way.truststore.keystoreFormat

string The keystore type (jks, pkcs12) in case of trust-
store of keystore type.

gate-
way.truststore.keystorePassword

string The password of the keystore type truststore.

gate-
way.truststore.keystorePath

string The keystore path in case of truststore of keystore
type.

gate-
way.truststore.opensslNewStoreFormat

[true, false] false In case of openssl truststore, specifies whether the
trust store is in openssl 1.0.0+ format (true) or
older openssl 0.x format (false)

gate-
way.truststore.opensslNsMode

[GLOBUS_EUGRIDPMA,
EU-
GRIDPMA_GLOBUS,
GLOBUS,
EU-
GRIDPMA,
GLOBUS_EUGRIDPMA_REQUIRE,
EU-
GRIDPMA_GLOBUS_REQUIRE,
GLOBUS_REQUIRE,
EU-
GRIDPMA_REQUIRE,
EU-
GRIDPMA_AND_GLOBUS,
EU-
GRIDPMA_AND_GLOBUS_REQUIRE,
IGNORE]

EU-
GRIDPMA_GLOBUS

In case of openssl truststore, controls which (and
in which order) namespace checking rules should
be applied. The ‘REQUIRE’ settings will cause
that all configured namespace definitions files
must be present for each trusted CA certificate
(otherwise checking will fail). The ‘AND’ settings
will cause to check both existing namespace files.
Otherwise the first found is checked (in the order
defined by the property).

gate-
way.truststore.opensslPath

filesystem
path

/etc/grid-
security/certificates

Directory to be used for opeenssl truststore.

gate-
way.truststore.crlConnectionTimeout

integer num-
ber

15 Connection timeout for fetching the remote CRLs
in seconds (not used for Openssl truststores).

gate-
way.truststore.crlDiskCachePath

filesystem
path

Directory where CRLs should be cached, after
downloading them from remote source. Can be
left undefined if no disk cache should be used.
Note that directory should be secured, i.e. normal
users should not be allowed to write to it. Not used
for Openssl truststores.

gate-
way.truststore.crlLocations.*

list of prop-
erties with
a common
prefix

List of CRLs locations. Can contain URLs, lo-
cal files and wildcard expressions. Not used for
Openssl truststores.(runtime updateable)

gate-
way.truststore.crlMode

[REQUIRE,
IF_VALID,
IGNORE]

IF_VALID General CRL handling mode. The IF_VALID set-
ting turns on CRL checking only in case the CRL
is present.

gate-
way.truststore.crlUpdateInterval

integer num-
ber

600 How often CRLs should be updated, in seconds.
Set to negative value to disable refreshing at run-
time.(runtime updateable)

gate-
way.truststore.ocspCacheTtl

integer num-
ber

3600 For how long the OCSP responses should be lo-
cally cached in seconds (this is a maximum value,
responses won’t be cached after expiration)

gate-
way.truststore.ocspDiskCache

filesystem
path

If this property is defined then OCSP responses
will be cached on disk in the defined folder.

gate-
way.truststore.ocspLocalResponders.<NUMBER>

list of prop-
erties with
a common
prefix

Optional list of local OCSP responders

gate-
way.truststore.ocspMode

[REQUIRE,
IF_AVAILABLE,
IGNORE]

IF_AVAILABLE General OCSP ckecking mode. REQUIRE should
not be used unless it is guaranteed that for all cer-
tificates an OCSP responder is defined.

gate-
way.truststore.ocspTimeout

integer num-
ber

10000 Timeout for OCSP connections in miliseconds.

gate-
way.truststore.revocationOrder

[CRL_OCSP,
OCSP_CRL]

OCSP_CRL Controls overal revocation sources order

gate-
way.truststore.revocationUseAll

[true, false] false Controls whether all defined revocation sources
should be always checked, even if the first one al-
ready confirmed that a checked certificate is not
revoked.

5.1. Gateway 115

UNICORE Docs

Scalability settings

To fine-tune the operational parameters of the embedded Jetty server, you can set advanced HTTP server parameters
(see HTTP server settings for details). Among others you can use the non-blocking IO connector offered by Jetty, which
will scale up to higher numbers of concurrent connections than the default connector.

The Gateway acts as a https client for the VSites behind it. The number of concurrent calls is limited, and controlled
by two parameters:

maximum total number of concurrent calls to Vsites
gateway.client.maxTotal=100
total number of concurrent calls per site
gateway.client.maxPerService=20

You can also control the limit on the maximum SOAP header size which is allowed by the Gateway. Typically you don’t
have to touch this parameter. However, if your clients do produce very big SOAP headers and the Gateway blocks
them, you can increase the limit. Note that such a giant SOAP header usually means that the client is not behaving as
intended, e.g. is trying to perform a DoS attack.

maximum size of an accepted SOAP header, in bytes
gateway.soapMaxHeader=102400

Note: The Gateway may consume this amount of memory (plus some extra amount for other data) for each opened
connection. Therefore, this value multiplied by the number of maximum allowed connections, should be significantly
lower, then the total memory available for the Gateway.

Dynamic registration of Vsites

Dynamic registration is controlled by three properties in CONF/gateway.properties file:

gateway.registration.enable=true
gateway.registration.secret=<your secret>

If set to true, the Gateway will accept dynamic registrations which are made by sending a HTTP POST request to
the URL /VSITE_REGISTRATION_REQUEST. This request must contain a parameter secret which matches the value
configured in the gateway.properties file.

Filters can be set to forbid access of certain hosts, or to require certain strings in the Vsite addresses. For example,

gateway.registration.deny=foo.org example.org

will deny registration if the remote hostname contains foo.org or example.org. Conversely,

gateway.registration.allow=mydomain.org

will only accept registrations if the remote address contains mydomain.org. These two (deny and allow) can be com-
bined.

116 Chapter 5. Administrator Documentation

UNICORE Docs

Web interface (monkey page)

For testing and simple monitoring purposes, the Gateway displays a website showing detailed site information
(the details view can be disabled). Once the Gateway is running, open up a browser and navigate to https://
<gateway_host>:8080 (or whichever URL the gateway is running on). If the Gateway is configured to do SSL
authentication, you will need to import a suitable client certificate into your web browser.

A HTML form for testing the dynamic registration is available as well, by clicking the link in the footer of the main
Gateway page.

To disable the Vsite details page, set

gateway.disableWebpage=true

5.1. Gateway 117

UNICORE Docs

Main options reference

Property name Type Default
value /
mandatory

Description

gateway.acme.enable [true, false] false Enable ACME / Let’s Encrypt support. Will
add a HTTP listener on the port defined the
acme.httpPort property.

gateway.acme.httpPort integer >= 1 80 Port for the plain HTTP listener.
gate-
way.acme.tokenDirectory

string ./acme Directory from which to serve Let’s Encrypt /
ACME tokens.

gateway.hostname string
manda-
tory

external gateway bind address

gateway.registration.allow string Space separated list of allowed hosts for dynamic
registration.

gateway.registration.deny string Space separated list of denied hosts for dynamic
registration.

gateway.registration.enable [true, false] false Whether dynamic registration of sites is enabled.
gateway.registration.secret string Required secret for dynamic registration.
gateway.soapMaxHeader string DEPRECATED, no effect
gate-
way.consignorTokenTimeTolerance

integer >= 0 30 The validity time of the authenticated client infor-
mation passed to backend sites will start that many
seconds before the real authentication. It is used to
mask time synchronization problems between ma-
chines.

gate-
way.consignorTokenValidity

integer >= 1 60 What is the validity time of the authenticated client
information passed to backend sites. Increase it if
there machines clocks are not synhronized.

gate-
way.signConsignorToken

[true, false] false Controls whether information about the authenti-
cated client (the consignor) passed to backend sites
should be signed, or not. Signing is slower, but is
required when sites may be reached directly, by-
passing the Gateway.

gateway.client.chunked [true, false] true Controls whether chunked passing of HTTP re-
quests to backend sites is supported.

gate-
way.client.connectionTimeout

integer num-
ber

30000 Connection timeout, used when connecting to
backend sites.

gate-
way.client.expectContinue

[true, false] true Controls whether the HTTP expect-continue mech-
anism is enabled on connections to backend sites.

gateway.client.gzip [true, false] true Controls whether support for compression is an-
nounced to backend sites.

gateway.client.keepAlive [true, false] true Whether to keep alive the connections to backend
sites.

gate-
way.client.maxPerService

integer num-
ber

20 Maximum allowed number of connections per
backend site.

gateway.client.maxTotal integer num-
ber

100 Maximum total number of connections to backend
sites allowed.

gate-
way.client.socketTimeout

integer num-
ber

30000 Connection timeout, used when connecting to
backend sites.

gateway.disableWebpage [true, false] false Whether the (so called monkey) status web page
should be disabled.

gateway.externalHostname string null External address of the gateway, when it is acces-
sible through a frontend server as Apache HTTP.118 Chapter 5. Administrator Documentation

UNICORE Docs

5.1. Gateway 119

UNICORE Docs

HTTP server settings

Property name Type Default
value /
mandatory

Description

gate-
way.httpServer.CORS_allowedHeaders

string * CORS: comma separated list of allowed HTTP
headers (default: any)

gate-
way.httpServer.CORS_allowedMethods

string GET,PUT,POST,DELETE,HEADCORS: comma separated list of allowed HTTP
verbs.

gate-
way.httpServer.CORS_allowedOrigins

string * CORS: allowed script origins.

gate-
way.httpServer.CORS_chainPreflight

[true, false] false CORS: whether preflight OPTION requests are
chained (passed on) to the resource or handled via
the CORS filter.

gate-
way.httpServer.CORS_exposedHeaders

string Location,Content-
Type

CORS: comma separated list of HTTP headers that
are allowed to be exposed to the client.

gate-
way.httpServer.disabledCipherSuites

string empty string Space separated list of SSL cipher suites to be
disabled. Names of the ciphers must adhere
to the standard Java cipher names, available
here: http://docs.oracle.com/javase/8/docs/
technotes/guides/security/SunProviders.html#
SupportedCipherSuites

gate-
way.httpServer.enableCORS

[true, false] false Control whether Cross-Origin Resource Sharing is
enabled. Enable to allow e.g. accesing REST ser-
vices from client-side JavaScript.

gate-
way.httpServer.enableHsts

[true, false] false Control whether HTTP strict transport security is
enabled. It is a good and strongly suggested se-
curity mechanism for all production sites. At the
same time it can not be used with self-signed or
not issued by a generally trusted CA server certifi-
cates, as with HSTS a user can’t opt in to enter such
site.

gate-
way.httpServer.enableSNI

[true, false] false Enable Server Name Indication (SNI)

gate-
way.httpServer.fastRandom

[true, false] false Use insecure, but fast pseudo random generator to
generate session ids instead of secure generator for
SSL sockets.

gate-
way.httpServer.gzip.enable

[true, false] false Controls whether to enable compression of HTTP
responses.

gate-
way.httpServer.gzip.minGzipSize

integer num-
ber

100000 Specifies the minimal size of message that should
be compressed.

gate-
way.httpServer.highLoadConnections

string DEPRECATED, no effect

gate-
way.httpServer.lowResourceMaxIdleTime

string DEPRECATED, no effect

gate-
way.httpServer.maxConnections

integer >= 0 0 Maximum number of incoming connections to this
server. If set to a value larger than 0, incoming con-
nections will be limited to that number. Default is
0 = unlimited.

gate-
way.httpServer.maxIdleTime

integer >= 1 200000 Time (in ms.) before an idle connection will time
out. It should be large enough not to expire connec-
tions with slow clients, values below 30s are getting
quite risky.

gate-
way.httpServer.maxThreads

integer num-
ber

255 Maximum number of threads to have in the thread
pool for processing HTTP connections. Note that
this number will be increased with few additional
threads to handle connectors.

gate-
way.httpServer.minThreads

integer >= 1 1 Minimum number of threads to have in the thread
pool for processing HTTP connections. Note that
this number will be increased with few additional
threads to handle connectors.

gate-
way.httpServer.requireClientAuthn

[true, false] true Controls whether the SSL socket requires client-
side authentication.

gateway.httpServer.useNIO string DEPRECATED, no effect
gate-
way.httpServer.wantClientAuthn

[true, false] true Controls whether the SSL socket accepts (but does
not require) client-side authentication.

gate-
way.httpServer.xFrameAllowed

string http://localhost URI origin that is allowed to embed web inter-
face inside a (i)frame. Meaningful only if the
xFrameOptions is set to ‘allowFrom’. The value
should be in the form: ‘http[s]://host[:port]’

gate-
way.httpServer.xFrameOptions

[deny, same-
Origin,
allowFrom,
allow]

deny Defines whether a clickjacking prevention should
be turned on, by insertionof the X-Frame-Options
HTTP header. The ‘allow’ value disables the fea-
ture. See the RFC 7034 for details. Note that for the
‘allowFrom’ you should define also the xFrameAl-
lowed option and it is not fully supported by all the
browsers.

120 Chapter 5. Administrator Documentation

http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SupportedCipherSuites
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SupportedCipherSuites
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SupportedCipherSuites

UNICORE Docs

5.1.1.3.4 Require end-user certificates

Using client certificates for end-user authentication are not required or recommended. If you still want to require end-
users to have a certificate, the Gateway can be configured accordingly. Set the following in gateway.properties:

gateway.httpServer.requireClientAuthn=true

Logging

UNICORE uses Log4j (version 2) as its logging framework, and comes with an example configuration file (CONF/
logging.properties).

Please refer to the Log4j documentation for more information.

The most important, root log categories used by the Gateway’s logging are:

unicore.gateway General Gateway logging
unicore.security Certificate details and other security
org.apache.http Outgoing HTTP to the backend services

5.1.1.4 Using Apache httpd as a frontend

You may wish to use the Apache webserver (httpd) as a frontent for the Gateway (e.g. for security or fault-tolerance
reasons).

5.1.1.4.1 Requirements

• Apache httpd

• mod_proxy for Apache httpd

5.1.1.4.2 External references

• https://wiki.eclipse.org/Jetty/Howto/Configure_mod_proxy

5.1.1.5 Using the Gateway for failover and/or loadbalancing of UNICORE sites

The Gateway can be used as a simple failover solution and/or loadbalancer to achieve high availability and/or higher
scalability of UNICORE/X sites without additional tools.

A site definition (in CONF/connections.properties) can be extended, so that multiple physical servers are used for
a single virtual site.

An example for such a so-called multi-site declaration in the connections.properties file looks as follows:

#declare a multisite with two physical servers

MYSITE=multisite:vsites=https://localhost:7788 https://localhost:7789

This will tell the Gateway that the virtual site MYSITE is indeed a multi-site with the two given physical sites.

5.1. Gateway 121

https://logging.apache.org/log4j/2.x/manual/configuration.html
https://httpd.apache.org/
https://httpd.apache.org/docs/2.4/mod/mod_proxy.html
https://wiki.eclipse.org/Jetty/Howto/Configure_mod_proxy

UNICORE Docs

5.1.1.5.1 Configuration

Configuration options for the multi-site can be passed in two ways. On the one hand they can go into the connections.
properties file, by putting them in the multi-site definition, separated by ; characters:

#declare a multisite with parameters

MYSITE=multisite:param1=value1;param2=value2;param3=value3;...

The following general parameters exist:

vsites List of physical sites
strategy Class name of the site selection strategy to use (see below)
config Name of a file containing additional parameters

Using the config option, all the parameters can be placed in a separate file for enhanced readability. For example, you
could define in connections.properties:

#declare a multisite with parameters read from a separate file

MYSITE=multisite:config=conf/mysite-cluster.properties

and give the details in the file conf/mysite-cluster.properties:

#example multisite configuration
vsites=https://localhost:7788 https://localhost:7789

#check site health at most every 5 seconds
strategy.healthcheck.interval=5000

5.1.1.5.2 Available strategies

A selection strategy is used to decide where a client request will be routed. By default, the strategy is “Primary with
fallback”, i.e. the request will go to the first site if it is available, otherwise it will go to the second site.

Primary with fallback

This strategy is suitable for a high-availability scenario, where a secondary site takes over the work in case the primary
one goes down for maintenance or due to a problem. This is the default strategy, so nothing needs to be configured to
enable it. If you want to explicitely enable it anyway, set

strategy=primaryWithFallback

The strategy will select from the first two defined physical sites. The first, primary one will be used if it is available,
else the second one. Health check is done on each request, but not more frequently as specified by the strategy.
healthcheck.interval parameter. By default, this parameter is set to 5000 milliseconds.

Changes to the site health will be logged at INFO level, so you can see when the sites go up or down.

122 Chapter 5. Administrator Documentation

UNICORE Docs

Round robin

This strategy is suitable for a load-balancing scenario, where a random site will be chosen from the available ones. To
enable it, set

strategy=roundRobin

Changes to the site health will be logged at INFO level, so you can see when the sites go up or down.

It is very important to be aware that this strategy requires that all backend sites used in the pool, share a common
persistence. It is because Gateway does not track clients, so particular client requests may land at different sites. This
is typically solved by using a non-default, shared database for sites, such as MySQL.

Caution: Currently loadbalancing of target sites is an experimental feature and is not yet fully functional. It will
be improved in future UNICORE versions.

Custom strategy

You can implement and use your own failover strategy, in this case, use the name of the Java class as strategy name:

strategy=your_class_name

5.1.1.6 Gateway failover and migration

The Using the Gateway for failover and/or loadbalancing of UNICORE sites covered usage of the Gateway to provide
failover of backend services. However, it may be needed to guarantee high-availabilty for the Gateway itself or to move
it to other machine in case of the original one’s failure.

5.1.1.6.1 Gateway’s migration

The Gateway does not store any state information, therefore its migration is easy. It is enough to install the Gateway at
the target machine (or even to simply copy it in the case of installation from the core server bundle) and to make sure
that the original Gateway’s configuration is preserved.

If the new machine uses a different address, it needs to be reflected in the server’s configuration file (the listen address).
Also, the configuration of sites behind the Gateway must be updated accordingly.

5.1.1.6.2 Failover and loadbalancing of the Gateway

Gateway itself doesn’t provide any features related to its own redundancy. However, as it is stateless, the standard
redundancy solutions can be used.

The simpliest solution is to use Round Robin DNS, where DNS server routes the Gateway’s DNS address to a pool
of real IP addresses. While easy to set up this solution has a significant drawback: DNS server doesn’t care about
machines being down.

5.1. Gateway 123

UNICORE Docs

5.2 UNICORE/X

UNICORE/X is the central component of a typical UNICORE installation, providing REST APIs for job management
and data access services for a single compute cluster (or just a file system).

Fig. 5.3: UNICORE/X Server

UNICORE/X Manual Installation and Operating the UNICORE/X server.

UNICORE/X Update Update a UNICORE/X server to this version.

5.2.1 UNICORE/X Manual

The UNICORE/X server is the central component of a UNICORE site. It hosts the services such as job submission,
job management, storage access, and provides the bridge to the functionality of the target resources, e.g. batch systems
or file systems.

For more information about UNICORE visit https://www.unicore.eu.

5.2.1.1 Getting started

5.2.1.1.1 Prerequisites

To run UNICORE/X, you need Java (OpenJDK, Oracle or IBM). We recommend using the latest version of the Open-
JDK. If not installed on your system, you can download it from https://openjdk.java.net/install/.

UNICORE/X has been developed and most extensively tested on Linux-like systems, but runs on MacOS/X as well.

Please note that

124 Chapter 5. Administrator Documentation

https://www.unicore.eu
https://openjdk.java.net/install/

UNICORE Docs

• to integrate into secure production environments, you will need access to a certificate authority and generate
certificates for all your UNICORE servers.

• to interface with a resource management system like Slurm or SGE, you need to install and configure the UNI-
CORE TSI server.

• to make your resources easily accessible outside of your firewalls, you should setup and configure a UNICORE
Gateway.

All these configuration options will be explained in the manual below.

5.2.1.1.2 Installation

UNICORE/X can be installed either as a part of the UNICORE Server bundle (tar.gz or zip archive) or from a Linux
package (i.e. RPM or deb) on the UNICORE project website at sourceforge.

To install from the tar.gz or zip archive, unpack the archive in a directory of your choice. You should then review the
config files in the conf/ directory, and adapt paths, hostname and ports. The config files are commented, and you can
also check Configuration of UNICORE/X.

To install from a Linux package, please use the package manager of your system to install the archive.

Note: Using the Linux packages, you can install only a single UNICORE/X instance per machine (without manual
changes). The tar.gz / zip archives are self contained, and you can easily install multiple servers per machine.

The following table gives an overview of the file locations for both tar.gz and Linux bundles:

Name in this manual tar.gz, zip rpm Description
CONF <basedir>/conf/ /etc/unicore/ unicorex Config files
LIB <basedir>/lib/ /usr/share/unicore /unicorex/lib Java libraries
LOG <basedir>/log/ /var/log/unicore /unicorex/ Log files
BIN <basedir>/bin/ /usr/sbin/ Start/stop scripts

Starting/Stopping

There are two scripts that expect to be run from the installation directory. To start, do:

$ cd <basedir>
$ bin/start.sh

Startup can take some time. After a successful start, the log files (e.g. LOG/startup.log) contain a message “Server
started.” and a report on the status of any connections to other servers (e.g. the TSI or global registry).

To stop the server, do:

$ cd <basedir>
$ bin/stop.sh

Using systemd on Linux, you would do (as root):

$ systemctl start unicore-unicorex.service

5.2. UNICORE/X 125

https://sourceforge.net/projects/unicore/files/Servers/Core/
https://sourceforge.net/p/unicore/wiki/Linux_Repositories/

UNICORE Docs

Log files

UNICORE/X writes its log file(s) to the LOG directory. By default, log files are rolled daily, There is no automated
removal of old logs, if required you will have to do this yourself.

Details about the logging configuration are given in Logging.

5.2.1.2 Configuration of UNICORE/X

5.2.1.2.1 Overview of the main configuration options

UNICORE/X is the central component in a UNICORE system and as such has a number of interfaces to other UNICORE
components, as well as many of configuration options. This section gives an overview of what can and should be
configured. The detailed configuration guide follows in the next sections.

Mandatory configuration

• SSL certificates and basic security: UNICORE uses SSL certificates for all servers. For UNICORE/X these
settings are made in the container.properties config file.

• Attribute sources: various ways are available to assign local attributes to users, such as Unix user name, groups
and role. For details, please refer to the Attribute sources.

• Backend / target system access: to access a resource manager like Slurm, the UNICORE TSI needs to be installed
and UNICORE/X needs to be configured accordingly. Please see Interfacing UNICORE/X to the TSI .

• You can choose to enable/disable certain UNICORE features, for example if you wish to set up a storage-only
UNICORE server. Please refer to Features provided by UNICORE/X.

UNICORE/X is configured using several config files residing in the CONF directory, please see Getting started for
the location of the CONF directory.

5.2.1.2.2 Config file overview

The following table indicates the main configuration files. Depending on configuration and installed extensions, some
of these files may not be present, or more files may be present.

UNICORE/X watches some configuration files for changes, and tries to reconfigure if they are modified, at least where
possible. This is indicated in the dynamically reloaded column.

126 Chapter 5. Administrator Documentation

UNICORE Docs

Table 5.3: UNICORE/X configuration files
config file usage dynamically reloaded
startup.properties Java process settings (e.g. memory),

lib/log/conf directories
no

logging.properties Logging levels, logfiles and their properties yes
main.config Main server config file. Defines features,

storages, AuthN/AuthZ, AIPs/PDPs
no

container.properties Server address, SSL settings, Web server
settings

no

tsi.config Configuration to access the TSI no
simpleidb Backend, installed applications, resources yes
simpleuudb Maps user DNs to local attributes (optional) yes
rest-users.txt Usernames/passwords for REST authentica-

tion (optional)
yes

xacml2Policies/*.xml Access control policy for securing the web
services

yes, via xacml2.config (do touch
xacml2.config to trigger)

xacml2.config Configure the XACML2 access control
component

yes

saml.config Configure the use of Unity as an attribute
source (optional)

no

5.2.1.2.3 Settings for the UNICORE/X process (e.g. memory)

The properties controlling the Java virtual machine running the UNICORE/X process are configured in

• UNIX: the CONF/startup.properties configuration file

• Windows: the CONF\wrapper.conf configuration file

These properties include basic settings (like maximum memory), see Administration for more on these.

5.2.1.2.4 Config file formats

UNICORE/X uses two different formats for configuration.

Java properties

• Each property can be assigned a value using the syntax name=value

• Please do not quote values, as the quotes will be interpreted as part of the value

• Comment lines are started by the “#”

• Multiline values are possible by ending lines with \, e.g.

name=value1 \
value2

In this example the value of the name property will be value1 value2.

You can use system environment variables within property values, e.g.

5.2. UNICORE/X 127

UNICORE Docs

name=${some_systemvariable}

Only use this syntax ${...} to reference UNICORE/X system variables!

To use UNIX system variables e.g. in storage path definitions use the syntax $VARIABLE, i.e. WITHOUT curly braces.

XML

Various XML dialects are being used, so please refer to the example files distributed with UNICORE for more infor-
mation on the syntax. In general XML is a bit unfriendly to edit, and it is rather easy to introduce typos.

Hint: It is advisable to run a tool such as xmllint after editing XML files to check for typos.

5.2.1.2.5 UNICORE/X container configuration overview

The following table gives an overview of the basic settings for a UNICORE/X server. These can be set in uas.config
or container.properties. Many of the settings (e.g. security) will be explained in more detail in separate
sections.

Property name Type Default value
/ mandatory

Description

container.baseurl string (deprecated, use ‘container.externalurl’)
Server URL as visible from the outside,
usually the gateway’s address, including
‘<sitename>/services’

container.client..* string can
have subkeys

Properties with this prefix are used to con-
figure clients created by the container. See
separate documentation for details.

container.externalregistry.url* list of prop-
erties with
a common
prefix

List of external registry URLs to register lo-
cal services.(runtime updateable)

container.externalregistry.use [true, false] false Whether the service should register it-
self in external registry(-ies), defined sepa-
rately.(runtime updateable)

container.externalurl string Server URL as visible from the outside, usu-
ally the gateway’s address, including ‘<site-
name>’

container.feature..* string can
have subkeys

Properties with this prefix are used to config-
ure the deployed features. See separate doc-
umentation for details.

container.host string localhost Server interface to listen on.
container.httpServer..* string can

have subkeys
Properties with this prefix are used to config-
ure container’s Jetty HTTP server. See sep-
arate documentation for details.

container.messageLogging..* [true, false]
can have
subkeys

false Append service name and set to ‘true’ to en-
able message logging for that service.

continues on next page

128 Chapter 5. Administrator Documentation

UNICORE Docs

Table 5.4 – continued from previous page
Property name Type Default value

/ mandatory
Description

container.onstartup string Space separated list of runnables to be exe-
cuted on server startup. It is preferred to use
onstartup.

con-
tainer.onstartup.<NUMBER>

list of prop-
erties with
a common
prefix

List of runnables to be executed on server
startup.

container.onstartupSelftest [true, false] true Controls whether to run tests of connections
to external services on startup.

container.persistence..* string can
have subkeys

Properties with this prefix are used to config-
ure container’s persistence layer. See sepa-
rate documentation for details.

con-
tainer.pools.executor.idletime

integer num-
ber

60000 The timeout in millis for removing idle
threads.

con-
tainer.pools.executor.maxsize

integer num-
ber

16 The maximum thread pool size for the inter-
nal execution service

con-
tainer.pools.executor.minsize

integer >= 1 2 The minimum thread pool size for the inter-
nal execution service

con-
tainer.pools.scheduled.idletime

integer num-
ber

60000 Timeout in millis for removing idle threads.

container.pools.scheduled.size integer >= 1 3 Defines the thread pool size for the execution
of scheduled services.

container.port integer [0 –
65535]

7777 Server listen port.

con-
tainer.runtimeConfigurationUpdate

[true, false] true Whether the server refreshes its configura-
tion at runtime whenever the main config file
changes.

container.security..* string can
have subkeys

Properties with this prefix are used to config-
ure container’s security. See separate docu-
mentation for details.

con-
tainer.services.expirycheck.initial.*

integer num-
ber can have
subkeys

120 The initial delay for resource expiry check-
ing (seconds). Additionally it can be used as
a per-service setting, after appending a dot
and service name to the property key.

con-
tainer.services.expirycheck.period.*

integer num-
ber can have
subkeys

60 The interval for resource expiry checking
(seconds). Additionally it can be used as a
per-service setting, after appending a dot and
service name to the property key.

con-
tainer.services.instanceLockingTimeout.*

integer num-
ber can have
subkeys

30 The timeout when attempting to lock re-
sources. Additionally it can be used as a
per-service setting, after appending a dot and
service name to the property key.

con-
tainer.services.lifetime.default.*

integer >= 1
can have sub-
keys

86400 Default lifetime of resources (in seconds).
Add dot and service name as a suffix of this
property to set a default per particular ser-
vice type.

continues on next page

5.2. UNICORE/X 129

UNICORE Docs

Table 5.4 – continued from previous page
Property name Type Default value

/ mandatory
Description

con-
tainer.services.lifetime.maximum.*

integer >= 1
can have sub-
keys

Maximum lifetime of resources (in sec-
onds). Add dot and service name as a suffix
of this property to set a limit per particular
service type.

con-
tainer.services.maxInstancesPerUser.*

integer >= 1
can have sub-
keys

2147483647 Maximum number per user of WS-resource
instances. Add dot and service name as a
suffix of this property to set a limit per par-
ticular service type.

con-
tainer.services.persistence.persist

string eu.unicore.services.persistence.PersistenceImplementation used to maintain the persis-
tence of resources state.

con-
tainer.services.registryEntryRefreshInterval

integer >= 1 1800 The default termination time of service
group entries in seconds.

container.servletpath string /services Servlet context path. In most cases shouldn’t
be changed.

container.sitename string DEMO-SITE Short, human friendly, name of the target
system, should be unique in the federation.

5.2.1.2.6 Integration of UNICORE/X with other parts of a UNICORE infrastructure

Since UNICORE/X is the central component, it is interfaced to other parts of the UNICORE architecture, i.e. the
Gateway and (optionally) a Registry.

Gateway

The gateway address is hard-coded into CONF/container.properties, using the container.baseurl property:

container.baseurl=https://Gateway_HOST:Gateway_PORT/SITENAME/services

where Gateway_HOST and Gateway_PORT are the host and port of the gateway, and SITENAME is the UNICORE/X
site name. The gateway address MUST be accessible from the UNICORE/X node!

On the gateway side, the UNICORE/X address is hard-coded as well, using an entry SITENAME=address in the
connections.properties file pointing to the network address of the UNICORE/X container.

Registry

It is possible to configure UNICORE/X to contact one or more external or global UNICORE Registries in order to
publish information on crucial services there.

For example,

container.externalregistry.use=true
container.externalregistry.url=https://host1:8080/REGISTRY/services/Registry?res=default_
→˓registry
container.externalregistry.url2=https://host2:8080/BACKUP/services/Registry?res=default_
→˓registry

130 Chapter 5. Administrator Documentation

UNICORE Docs

Unity

If you want to support user authentication via Unity, and add an extra level of security by validating the replies from
Unity, you have to configure UNICORE/X to trust one or more Unity servers. This is done using the container.
security.trustedAssertionIssuers property. This configures a truststore containing the certificates of all trusted
Unity servers (NOT the CA certificates).

For example, to configure a directory containing the trusted certificates in PEM format:

configure trusted Unity certificates
container.security.trustedAssertionIssuers.type=directory
container.security.trustedAssertionIssuers.directoryLocations.1=conf/unity/unity.pem

All the usual options for configuring truststores are available here, as well as described in Credential and truststore
settings.

Note: To enable certificate-less end user access, you will also make sure that the Gateway does not require SSL
client-authentication. Please refer to the Gateway Manual.

5.2.1.2.7 Security

Overview

Security is a complex issue, and many options exist. On a high level, the following items need to be configured:

• SSL setup (keystore and truststore settings for securing the basic communication between components).

• Authentication options for selecting what kind of credentials users can use to identify themselves to the UNI-
CORE/X server. A number of authentication options exist, from various forms of username/password authenti-
cation to OIDC tokens. Even X.509 certificates and SSH keys are supported. If multiple options are configured,
the first successful authentication will be used. The description of the configuration options can be found in
Authentication

• Attribute sources configuration which assign an authorisation role, UNIX login, group and other properties to
UNICORE users. A number of attribute sources exist, which can be combined using various combining algo-
rithms. These are configured in the uas.config file. Due to the complexity, the description of the configuration
options can be found in Attribute sources.

In very rare cases, you might want to change the

• Access control setup (controlling in detail who can do what on which services). Again, several options exist,
which are described in Authorization back-end (PDP) guide.

5.2. UNICORE/X 131

https://unity-idm.eu/

UNICORE Docs

General security options

This table presents all security related options, except credential and truststore settings which are described in the
subsequent section.

132 Chapter 5. Administrator Documentation

UNICORE Docs

Property name Type Default value
/ mandatory

Description

con-
tainer.security.accesscontrol.*

[true, false]
can have
subkeys

true Controls whether access checking (authori-
sation) is enabled. Can be used per ser-
vice after adding dot and service name to the
property key.(runtime updateable)

con-
tainer.security.accesscontrol.pdp

Class ex-
tending
eu.unicore.services.security.pdp.UnicoreXPDP

Controls which Policy Decision Point (PDP,
the authorisation engine) should be used.
Default value is determined as follows: if
eu.unicore.uas.pdp.local.LocalHerasafPDP
is available then it is used. If not then this
option becomes mandatory.

con-
tainer.security.accesscontrol.pdpConfig

filesystem
path

Path of the PDP configuration file

con-
tainer.security.additionalServiceIdentifier*

list of prop-
erties with
a common
prefix

List of additional service identifiers (e.g.
URLs where this service is accessible) ac-
cepted in SAML authentication.

container.security.attributes.* string can
have subkeys

Prefix used for configurations of particular
attribute sources.

con-
tainer.security.attributes.combiningPolicy

string MERGE_LAST_OVERRIDESWhat algorithm should be used for com-
bining the attributes from multiple attribute
sources (if more then one is defined).

con-
tainer.security.attributes.disableRuntimeUpdates

[true, false] false Whether to not allow runtime updates of the
attribute sources.

con-
tainer.security.attributes.order

string Attribute sources in invocation order.

container.security.credential..* string can
have subkeys

Properties with this prefix are used to con-
figure the credential used by the container.
See separate documentation for details.

con-
tainer.security.defaultVOs.<NUMBER>

list of prop-
erties with
a common
prefix

empty string List of default VOs, which should be as-
signed for a request without a VO set. The
first VO on the list where the user is member
will be used.

con-
tainer.security.dynamicAttributes.*

string can
have subkeys

Prefix used for configurations of particular
dynamic attribute sources.

con-
tainer.security.dynamicAttributes.combiningPolicy

string MERGE_LAST_OVERRIDESWhat algorithm should be used for combin-
ing the attributes from multiple dynamic at-
tribute sources (if more then one is defined).

con-
tainer.security.dynamicAttributes.disableRuntimeUpdates

[true, false] false Whether to not allow runtime updates of the
dynamic attribute sources.

con-
tainer.security.dynamicAttributes.order

string Dynamic attribute sources in invocation or-
der.

con-
tainer.security.gateway.certificate

filesystem
path

Path to gateway’s certificate file in PEM or
DER format. Note that DER format is used
only for files with ‘.der’ extension. It is used
only for gateway’s authentication assertions
verification (if enabled). Note that this is
not needed to set it if waiting for gateway on
startup is turned on.

con-
tainer.security.gateway.enable

[true, false] true Whether to gateway-related features are en-
abled. Note that if it is enabled either the
UNICORE/X server must be secured (usu-
ally via firewall) to disable non-gateway ac-
cess.

con-
tainer.security.gateway.registration

[true, false] false Whether the site should try to autoregister
itself with the Gateway. This must be also
configured on the Gateway side.

con-
tainer.security.gateway.registrationSecret

string Required secret when autoregistering with
the Gateway. This must match the secret
configured on the Gateway side.

con-
tainer.security.gateway.registrationUpdateInterval

integer >= 10 30 How often the automatic gateway registra-
tion should be refreshed.

con-
tainer.security.gateway.waitOnStartup

[true, false] true Controls whether to wait for the gateway at
startup.

con-
tainer.security.gateway.waitTime

integer >= 1 180 Controls for how long to wait for the gateway
on startup (in seconds).

container.security.rest.* string can
have subkeys

Prefix used to configure REST subsystem se-
curity. See separate docs.

con-
tainer.security.sessionLifetime

integer >= 1 28800 Controls the lifetime of security sessions (in
seconds).

con-
tainer.security.sessionsEnabled

[true, false] true Controls whether the server supports secu-
rity sessions which reduce client/server traf-
fic and load.

con-
tainer.security.sessionsPerUser

integer >= 1 5 Controls the number of security sessions
each user can have. If exceeded, some
cleanup will be performed.

container.security.sslEnabled [true, false] true Controls whether secure SSL mode is en-
abled.

con-
tainer.security.trustedAssertionIssuers..*

string can
have subkeys

Allows for configuring a truststore (using
normal truststore properties with this pre-
fix) with certificates of trusted services (not
CAs!) which are permitted to issue trust del-
egations and authenticate with SAML. Typ-
ically this truststore should contain certifi-
cates of all Unity instanes installed.

container.security.truststore..* string can
have subkeys

Properties with this prefix are used to config-
ure container’s trust settings and certificates
validation. See separate documentation for
details.

5.2. UNICORE/X 133

UNICORE Docs

Credential and truststore settings

These properties are used to configure the server’s credential (used to make outgoing SSL connections) and truststore.
The truststore controls which incoming SSL connections are accepted.

We recommend using a credential in PKCS12 or .pem format, and a directory containing .pem files as truststore.

Property name Type Default value / manda-
tory

Description

con-
tainer.security.credential.path

filesystem
path mandatory Credential location. In case of ‘jks’,

‘pkcs12’ and ‘pem’ store it is the only
location required. In case when cre-
dential is provided in two files, it is the
certificate file path.

con-
tainer.security.credential.format

[jks, pkcs12,
der, pem]

Format of the credential. It is guessed
when not given. Note that ‘pem’ might
be either a PEM keystore with certifi-
cates and keys (in PEM format) or a
pair of PEM files (one with certificate
and second with private key).

con-
tainer.security.credential.password

string Password required to load the creden-
tial.

con-
tainer.security.credential.keyPath

string Location of the private key if stored
separately from the main credential
(applicable for ‘pem’ and ‘der’ types
only),

con-
tainer.security.credential.keyPassword

string Private key password, which might be
needed only for ‘jks’ or ‘pkcs12’, if
key is encrypted with different pass-
word then the main credential pass-
word.

con-
tainer.security.credential.keyAlias

string Keystore alias of the key entry to be
used. Can be ignored if the keystore
contains only one key entry. Only ap-
plicable for ‘jks’ and ‘pkcs12’.

con-
tainer.security.credential.reloadOnChange

[true, false] true Monitor credential location and trig-
ger dynamical reload if file changes.

134 Chapter 5. Administrator Documentation

UNICORE Docs

Property name Type Default value
/ mandatory

Description

con-
tainer.security.truststore.allowProxy

[ALLOW, DENY] ALLOW Controls whether proxy certificates are sup-
ported.

con-
tainer.security.truststore.type

[keystore, openssl,
directory] manda-

tory

The truststore type.

con-
tainer.security.truststore.updateInterval

integer number 600 How often the truststore should be reloaded,
in seconds. Set to negative value to disable
refreshing at runtime.(runtime updateable)

con-
tainer.security.truststore.directoryConnectionTimeout

integer number 15 Connection timeout for fetching the remote
CA certificates in seconds.

con-
tainer.security.truststore.directoryDiskCachePath

filesystem path Directory where CA certificates should be
cached, after downloading them from a re-
mote source. Can be left undefined if no disk
cache should be used. Note that directory
should be secured, i.e. normal users should
not be allowed to write to it.

con-
tainer.security.truststore.directoryEncoding

[PEM, DER] PEM For directory truststore controls whether cer-
tificates are encoded in PEM or DER. Note
that the PEM file can contain arbitrary num-
ber of concatenated, PEM-encoded certifi-
cates.

con-
tainer.security.truststore.directoryLocations.*

list of properties
with a common
prefix

List of CA certificates locations. Can con-
tain URLs, local files and wildcard expres-
sions.(runtime updateable)

con-
tainer.security.truststore.keystoreFormat

string The keystore type (jks, pkcs12) in case of
truststore of keystore type.

con-
tainer.security.truststore.keystorePassword

string The password of the keystore type truststore.

con-
tainer.security.truststore.keystorePath

string The keystore path in case of truststore of key-
store type.

con-
tainer.security.truststore.opensslNewStoreFormat

[true, false] false In case of openssl truststore, specifies
whether the trust store is in openssl 1.0.0+
format (true) or older openssl 0.x format
(false)

con-
tainer.security.truststore.opensslNsMode

[GLOBUS_EUGRIDPMA,
EU-
GRIDPMA_GLOBUS,
GLOBUS, EU-
GRIDPMA,
GLOBUS_EUGRIDPMA_REQUIRE,
EU-
GRIDPMA_GLOBUS_REQUIRE,
GLOBUS_REQUIRE,
EU-
GRIDPMA_REQUIRE,
EU-
GRIDPMA_AND_GLOBUS,
EU-
GRIDPMA_AND_GLOBUS_REQUIRE,
IGNORE]

EU-
GRIDPMA_GLOBUS

In case of openssl truststore, controls which
(and in which order) namespace checking
rules should be applied. The ‘REQUIRE’
settings will cause that all configured names-
pace definitions files must be present for
each trusted CA certificate (otherwise check-
ing will fail). The ‘AND’ settings will cause
to check both existing namespace files. Oth-
erwise the first found is checked (in the order
defined by the property).

con-
tainer.security.truststore.opensslPath

filesystem path /etc/grid-
security/certificates

Directory to be used for opeenssl truststore.

con-
tainer.security.truststore.crlConnectionTimeout

integer number 15 Connection timeout for fetching the remote
CRLs in seconds (not used for Openssl trust-
stores).

con-
tainer.security.truststore.crlDiskCachePath

filesystem path Directory where CRLs should be cached, af-
ter downloading them from remote source.
Can be left undefined if no disk cache should
be used. Note that directory should be se-
cured, i.e. normal users should not be al-
lowed to write to it. Not used for Openssl
truststores.

con-
tainer.security.truststore.crlLocations.*

list of properties
with a common
prefix

List of CRLs locations. Can contain URLs,
local files and wildcard expressions. Not
used for Openssl truststores.(runtime up-
dateable)

con-
tainer.security.truststore.crlMode

[REQUIRE,
IF_VALID, IG-
NORE]

IF_VALID General CRL handling mode. The
IF_VALID setting turns on CRL checking
only in case the CRL is present.

con-
tainer.security.truststore.crlUpdateInterval

integer number 600 How often CRLs should be updated, in sec-
onds. Set to negative value to disable re-
freshing at runtime.(runtime updateable)

con-
tainer.security.truststore.ocspCacheTtl

integer number 3600 For how long the OCSP responses should be
locally cached in seconds (this is a maximum
value, responses won’t be cached after expi-
ration)

con-
tainer.security.truststore.ocspDiskCache

filesystem path If this property is defined then OCSP re-
sponses will be cached on disk in the defined
folder.

con-
tainer.security.truststore.ocspLocalResponders.<NUMBER>

list of properties
with a common
prefix

Optional list of local OCSP responders

con-
tainer.security.truststore.ocspMode

[REQUIRE,
IF_AVAILABLE,
IGNORE]

IF_AVAILABLE General OCSP ckecking mode. REQUIRE
should not be used unless it is guaranteed
that for all certificates an OCSP responder
is defined.

con-
tainer.security.truststore.ocspTimeout

integer number 10000 Timeout for OCSP connections in milisec-
onds.

con-
tainer.security.truststore.revocationOrder

[CRL_OCSP,
OCSP_CRL]

OCSP_CRL Controls overal revocation sources order

con-
tainer.security.truststore.revocationUseAll

[true, false] false Controls whether all defined revocation
sources should be always checked, even
if the first one already confirmed that a
checked certificate is not revoked.

5.2. UNICORE/X 135

UNICORE Docs

5.2.1.2.8 Configuring the execution backend (XNJS and TSI)

Information on the configuration of the XNJS and TSI backend can be found in Interfacing UNICORE/X to the TSI .

5.2.1.2.9 Configuring storage services

Information on the configuration of the storage factory service, shared storages and per-user storages attached to target
systems can be found in Configuration of storages.

5.2.1.2.10 HTTP proxy, timeout and web server settings

A number of settings exist that control the the web server and the HTTPClient library used for outgoing HTTP(s) calls.

The HTTP server options are shown in the following table:

136 Chapter 5. Administrator Documentation

UNICORE Docs

Property name Type Default value
/ mandatory

Description

con-
tainer.httpServer.CORS_allowedHeaders

string * CORS: comma separated list of allowed
HTTP headers (default: any)

con-
tainer.httpServer.CORS_allowedMethods

string GET,PUT,POST,DELETE,HEADCORS: comma separated list of allowed
HTTP verbs.

con-
tainer.httpServer.CORS_allowedOrigins

string * CORS: allowed script origins.

con-
tainer.httpServer.CORS_chainPreflight

[true, false] false CORS: whether preflight OPTION requests
are chained (passed on) to the resource or
handled via the CORS filter.

con-
tainer.httpServer.CORS_exposedHeaders

string Location,Content-
Type

CORS: comma separated list of HTTP head-
ers that are allowed to be exposed to the
client.

con-
tainer.httpServer.disabledCipherSuites

string empty string Space separated list of SSL cipher suites
to be disabled. Names of the ciphers must
adhere to the standard Java cipher names,
available here: http://docs.oracle.com/
javase/8/docs/technotes/guides/security/
SunProviders.html#SupportedCipherSuites

con-
tainer.httpServer.enableCORS

[true, false] false Control whether Cross-Origin Resource
Sharing is enabled. Enable to allow e.g.
accesing REST services from client-side
JavaScript.

con-
tainer.httpServer.enableHsts

[true, false] false Control whether HTTP strict transport secu-
rity is enabled. It is a good and strongly sug-
gested security mechanism for all produc-
tion sites. At the same time it can not be used
with self-signed or not issued by a generally
trusted CA server certificates, as with HSTS
a user can’t opt in to enter such site.

con-
tainer.httpServer.enableSNI

[true, false] false Enable Server Name Indication (SNI)

con-
tainer.httpServer.fastRandom

[true, false] false Use insecure, but fast pseudo random gener-
ator to generate session ids instead of secure
generator for SSL sockets.

con-
tainer.httpServer.gzip.enable

[true, false] false Controls whether to enable compression of
HTTP responses.

con-
tainer.httpServer.gzip.minGzipSize

integer number 100000 Specifies the minimal size of message that
should be compressed.

con-
tainer.httpServer.maxConnections

integer >= 0 0 Maximum number of incoming connections
to this server. If set to a value larger than 0,
incoming connections will be limited to that
number. Default is 0 = unlimited.

con-
tainer.httpServer.maxIdleTime

integer >= 1 200000 Time (in ms.) before an idle connection will
time out. It should be large enough not to
expire connections with slow clients, values
below 30s are getting quite risky.

con-
tainer.httpServer.maxThreads

integer number 255 Maximum number of threads to have in the
thread pool for processing HTTP connec-
tions. Note that this number will be in-
creased with few additional threads to han-
dle connectors.

con-
tainer.httpServer.minThreads

integer >= 1 1 Minimum number of threads to have in the
thread pool for processing HTTP connec-
tions. Note that this number will be in-
creased with few additional threads to han-
dle connectors.

con-
tainer.httpServer.requireClientAuthn

[true, false] true Controls whether the SSL socket requires
client-side authentication.

con-
tainer.httpServer.wantClientAuthn

[true, false] true Controls whether the SSL socket accepts
(but does not require) client-side authentica-
tion.

con-
tainer.httpServer.xFrameAllowed

string http://localhost URI origin that is allowed to embed web
interface inside a (i)frame. Meaningful
only if the xFrameOptions is set to ‘al-
lowFrom’. The value should be in the form:
‘http[s]://host[:port]’

con-
tainer.httpServer.xFrameOptions

[deny, sameOrigin,
allowFrom, allow]

deny Defines whether a clickjacking prevention
should be turned on, by insertionof the X-
Frame-Options HTTP header. The ‘allow’
value disables the feature. See the RFC 7034
for details. Note that for the ‘allowFrom’
you should define also the xFrameAllowed
option and it is not fully supported by all the
browsers.

5.2. UNICORE/X 137

http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SupportedCipherSuites
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SupportedCipherSuites
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SupportedCipherSuites

UNICORE Docs

The HTTP client options are the following:

138 Chapter 5. Administrator Documentation

UNICORE Docs

Property name Type Default value
/ mandatory

Description

con-
tainer.httpServer.digitalSigningEnabled

[true, false] true Controls whether signing of key web service
requests should be performed.

con-
tainer.httpServer.httpAuthnEnabled

[true, false] false Whether HTTP basic authentication should
be used.

con-
tainer.httpServer.httpPassword

string empty string Password for use with HTTP basic authenti-
cation (if enabled).

con-
tainer.httpServer.httpUser

string empty string Username for use with HTTP basic authen-
tication (if enabled).

con-
tainer.httpServer.maxWsCallRetries

integer number 3 Controls how many times the client should
try to call a failing web service. Note that
only the transient failure reasons cause the
retry. Note that value of 0 enables unlimited
number of retries, while value of 1 means
that only one call is tried.

con-
tainer.httpServer.messageLogging

[true, false] false Controls whether messages should be
logged (at INFO level).

con-
tainer.httpServer.securitySessions

[true, false] true Controls whether security sessions should
be enabled.

con-
tainer.httpServer.serverHostnameChecking

[NONE, WARN,
FAIL]

WARN Controls whether server’s hostname should
be checked for matching its certificate sub-
ject. This verification prevents man-in-the-
middle attacks. If enabled WARN will only
print warning in log, FAIL will close the
connection.

con-
tainer.httpServer.sslAuthnEnabled

[true, false] true Controls whether SSL authentication of the
client should be performed.

con-
tainer.httpServer.wsCallRetryDelay

integer number 10000 Amount of milliseconds to wait before retry
of a failed web service call.

container.httpServer.http.allow-
chunking

[true, false] true If set to false, then the client will not use
HTTP 1.1 data chunking.

container.httpServer.http.connection-
close

[true, false] false If set to true then the client will send con-
nection close header, so the server will close
the socket.

con-
tainer.httpServer.http.connection.timeout

integer number 20000 Timeout for the connection establishing
(ms)

con-
tainer.httpServer.http.maxPerRoute

integer number 6 How many connections per host can be
made. Note: this is a limit for a single client
object instance.

con-
tainer.httpServer.http.maxRedirects

integer number 3 Maximum number of allowed HTTP redi-
rects.

con-
tainer.httpServer.http.maxTotal

integer number 20 How many connections in total can be made.
Note: this is a limit for a single client object
instance.

con-
tainer.httpServer.http.socket.timeout

integer number 0 Socket timeout (ms)

con-
tainer.httpServer.http.nonProxyHosts

string Space (single) separated list of hosts, for
which the HTTP proxy should not be used.

con-
tainer.httpServer.http.proxy.password

string Relevant only when using HTTP proxy:
defines password for authentication to the
proxy.

con-
tainer.httpServer.http.proxy.user

string Relevant only when using HTTP proxy:
defines username for authentication to the
proxy.

con-
tainer.httpServer.http.proxyHost

string If set then the HTTP proxy will be used, with
this hostname.

con-
tainer.httpServer.http.proxyPort

integer number HTTP proxy port. If not defined then system
property is consulted, and as a final fallback
80 is used.

con-
tainer.httpServer.http.proxyType

string HTTP HTTP proxy type: HTTP or SOCKS.

5.2. UNICORE/X 139

UNICORE Docs

5.2.1.2.11 Features provided by UNICORE/X

The functionality of the UNICORE/X server is organised into features, where each feature can combine services, startup
code and the like.

Features are enabled by default.

Features can be disabled via configuration. It is also possible to disable single services in a feature.

JobManagement

This feature deals with job submission and management, as well as those storage services required for job processing.

To disable the whole feature

container.feature.JobManagement.enable=false

Service name Usage
TargetSystemFactoryService High level compute service
TargetSystemService Per-user compute service instances
JobManagement Per job service instance
ReservationManagement Make and edit reservations
StorageManagement Access to storages
ServerServerFileTransfer Server-server file transfers
ClientServerFileTransfer Data upload/download

StorageAccess

This feature provides storage access, storage factory service, metadata management and file transfers.

Service name Usage
StorageManagement Access to storages
StorageFactory Dynamically create new storage endpoints
MetadataManagement Metadata service
ServerServerFileTransfer Server-server file transfers
ClientServerFileTransfer Data upload/download

To disable the whole feature

container.feature.StorageAccess.enable=false

To disable only one service, e.g. the Storage Factory

container.feature.StorageAccess.StorageFactory.enable=false

140 Chapter 5. Administrator Documentation

UNICORE Docs

Workflow

This feature provides workflow processing involving only this UNICORE/X server, (i.e. NO cross-site workflows)

To disable the whole feature

container.feature.WorkflowEngine.enable=false

Base

This feature provides low-level services, but also contains the RESTful APIs for jobs and data management.

Service name Usage
core RESTful APIs for jobs and data
Task Service for async tasks (like metadata extraction)

Admin

This feature provides the Admin service (see The Admin web service).

Service name Usage
admin RESTful API to the admin service

5.2.1.3 Registry

This feature provides the Registry service. This covers both the internal version running in every UNICORE/X server,
as well as the shared Registry that is used to store information about multiple UNICORE servers.

A setting

container.feature.Registry.mode=shared

will enable shared mode. Don’t do this on a normal UNICORE/X server.

Service name Usage
registries RESTful API to the Registry service
Registry Registry service
ServiceGroupEntry Registry entries service

5.2.1.4 Administration

5.2.1.4.1 Controlling UNICORE/X memory usage

You can set a limit on the number of service instances (e.g. jobs) per user. This allows you to make sure your server stays
nicely up and running even if flooded by jobs. To enable, edit CONF/container.properties and add properties, e.g.

5.2. UNICORE/X 141

UNICORE Docs

container.wsrf.maxInstancesPerUser.JobManagement=200
container.wsrf.maxInstancesPerUser.FileTransfer=20

The last part of the property name is the service name, please see Features provided by UNICORE/X for the services
in UNICORE/X.

When the limits are reached, the server will report an error to the client (e.g. when trying to submit a new job).

5.2.1.4.2 Logging

UNICORE uses the Log4j 2 logging framework. The config file is specified with a Java property log4j.
configurationFile.

Hint: You can change the logging configuration at runtime by editing the logging.properties file. The new
configuration will take effect a few seconds after the file has been modified.

By default, log files are written to the the LOGS directory.

Within the logging pattern, you can use special variables to output information. In addition to the variables defined by
Log4j (such as %d), UNICORE defines several variables related to the client and the current job:

Variable Description
%X{clientName} the distinguished name of the current client
%X{jobID} the unique ID of the currently processed job

A sample logging pattern might be

%d [%X{clientName}] [%X{jobID}] [%t] %-5p %c{1} %x - %m%n

For more info on controlling the logging we refer to the Log4j 2 documentation.

Logger categories, names and levels

Logger names are hierarchical. In UNICORE, prefixes are used (e.g. unicore.security) to which the Java
class name is appended. For example, the XUUDB connector in UNICORE/X logs to the unicore.security.
XUUDBAuthoriser logger.

Therefore the logging output produced can be controlled in a fine-grained manner.

Here is a table of the various logger categories:

142 Chapter 5. Administrator Documentation

https://logging.apache.org/log4j/2.x/manual/configuration.html
https://logging.apache.org/log4j/2.x/manual/configuration.html

UNICORE Docs

Log category Description
unicore All of UNICORE
unicore.security Security layer
unicore.services Service operational information
unicore.services.jobexecution Information related to job execution
unicore.services.jobexecution. US-
AGE

Usage logging (see next section)

unicore.xnjs XNJS subsystem (execution engine)
unicore.xnjs.tsi TSI subsystem (batch system connector)
unicore.client Client calls (to other servers)
unicore.wsrflite Underlying services environment (WSRF framework)
uftp UFTP client/server communication
org.apache.cxf Web service toolkit (Apache CXF)

Caution: Please take care to not set the global level to TRACE or DEBUG for long times, as this will produce a lot
of output.

Usage logging

Often it is desirable to keep track of the usage of your UNICORE site. The UNICORE/X server has a special logger
category called unicore.services.jobexecution.USAGEwhich logs information about finished jobs at INFO level.

5.2.1.4.3 Administration and monitoring

The health of a UNICORE/X container, and things like running services, lifetimes, etc. can be monitored in several
ways.

Commandline client (UCC)

It is possible to use the UNICORE commandline client (UCC) for administrative and operations tasks.

To do this you need to configure UCC with administrative privileges. One way is to add the admin role to your user
account, and select this role when running UCC commands

$ ucc -Z role:admin

or create a dedicated admin user.

Another way to do this is using the server certificate of the UNICORE/X server, which will give UCC administrator
rights provided UNICORE/X is configured to accept X509 authentication.

use UNICORE/X keystore
authenticationMethod=X509
credential.path=/path/to/unicorex/keystore
credential.password=...

(optional) truststore config omitted

5.2. UNICORE/X 143

UNICORE Docs

Also you should connect directly to UNICORE/X, not to the registry as usual. Say your UNICORE/X server is running
on myhost on port 7777, your preferences file would look like this:

registry=https://myhost:7777/rest/registries/default_registry

Note that the registry URL points directly to the UNICORE/X server, not to a gateway.

Examples

Some UCC commands that are useful are the list-jobs, list-sites and rest commands. Using list-jobs you
can search for jobs with given properties, whereas the rest command allows to look at any resource, or even destroy
resources.

To list all jobs on the server belonging to a specific user, do

$ ucc list-jobs -f Log contains <username>

where username is some unique part of the user’s DN, or the xlogin. Similarly, you can filter based on other properties
of the job.

The rest command can be used to destroy resources, or look at their properties. Please see ucc rest -h for details.

Try

$ ucc rest get https://myhost:7777/rest/core/factories/default_target_system_factory

The Admin web service

The Admin service is a powerful tool to get inside information about your server using the UCC (or possibly another
UNICORE client) and run one of the available admin actions, which provide useful functions.

If you have enabled the admin service, you can do

$ ucc admin-info -l

to get information about available admin services. Note that you need to have role admin to invoke the admin service.
The output includes information about the available administrative commands. To run one of these, you can use the
admin-runcommand command. For example, to temporarily disable job submission

$ ucc admin-runcommand ToggleJobSubmission

To have a look at the internal information about a user job, try

$ ucc admin-runcommand ShowJobDetails jobID=......

where jobID is the unique ID of the job.

144 Chapter 5. Administrator Documentation

UNICORE Docs

5.2.1.4.4 Migration of a UNICORE/X server to another physical host

If you want to migrate a UNICORE/X server to another host, there are several things to consider. The hostname and
port are listed in CONF/container.properties and usually in the Gateway’s connection.properties file. These
you will have to change. Otherwise, you can copy the relevant files in CONF to the new machine. Also, the persisted
state data needs to be moved to the new machine, if it is stored on the file system. If it is stored in a database, there
is nothing to be done. If you are using a TSI server, you might need to edit the TSI’s properties file and update the
tsi.njs_machine property.

5.2.1.5 Security concepts in UNICORE/X

This section describes the basic security concepts and architecture used in UNICORE/X. The overall procedure per-
formed by the security infrastructure can be summarised as follows:

• the incoming message is authenticated first by the SSL layer. In general, messages will be relegated through the
Gateway, and will not be directly from end user clients.

• extract authentication information from the HTTP headers, such as username/password, OAuth token, a JWT
delegation token or even X509 certificate information.

• authenticate the message using the configured authentication handlers. This procedure will assign a X500 dis-
tinguished name to the current user, which in UNICORE terms is the user identity.

• a security session is established (if sessions are enabled), and the client can simply send the security session ID
on subsequent requests to avoid having to go through the full authentication process again.

• extract further information used for authorisation from the message sent to the server. This information may
include: originator of the message(in case the message passed through a UNICORE gateway), trust delegation
tokens, incoming VO membership assertions, etc.

• generate or lookup attributes to be used used for authorisation in the configured attribute sources.

• perform policy check by executing a PDP request.

All these steps can be widely configured.

5.2.1.5.1 Security concepts

Identity

A server has a certificate, which is used to identify the server when it makes a web service request. This certificate
resides in the server keystore, (see Configuration of UNICORE/X).

A user request is assigned an identity during the authentication process. Identities are X.500 distinguished names.
Requests without authentication are anonymous and are usually limited to informational endpoints.

5.2. UNICORE/X 145

UNICORE Docs

Fig. 5.4: UNICORE Authentication and Authorization

Security tokens

When a client makes a request to UNICORE/X, a number of tokens are read from the message headers. These are
placed in the security context for the current request.

Resource ownership

Each service is owned by some entity identified by an X.500 distinguished name. By default, the server is the owner.
When a resource is created on user request (for example when submitting a job), the user is the owner.

Trust delegation

Messages can be sent from other servers on behalf of an end user. The server will prove this by using a JWT token
for authentication, which contains the target user’s identity (X500 name), and which is signed by the sending server.
The receiving server can check the signature with the sender’s public key, which will generally be read from the shared
registry.

146 Chapter 5. Administrator Documentation

UNICORE Docs

Attributes

UNICORE/X retrieves user attributes using either a local component or a remote service. For example, an XUUDB
attribute service can be configured. See Attribute sources for more information.

Policy checks

Each request is checked based on the following information:

• available security tokens

• the resource owner

• the resource accessed (e.g. service name + instance id)

• the activity to be performed (the web method such as GET)

The validation is performed by the PDP (Policy Decision Point). The default PDP uses a list of rules expressed in
XACML 2.0 format that are configured for the server. The Authorization back-end (PDP) guide describes how to
configure different engines for policy evaluation including a remote one.

Authorisation

A request is allowed, if the PDP allows it, based on the user’s attributes.

Security sessions

If enabled (which is the default), the server generates a security session after successful authentication. The session
ID is sent back to the client (via HTTP header X-UNICORE-SecuritySession in the response), allowing the client to
authenticate subsequent requests using this session ID (using the same HTTP header). This will speed-up the client-
server communication, especially in cases where external authentication (e.g. via Unity is used). These sessions have
a limited lifetime (8 hours by default).

Note: The security session only covers authentication attribute assignment and authorization is always done for each
request.

For details on how to configure this feature, see the general properties overview in section Configuration of UNI-
CORE/X.

5.2.1.6 Authentication

5.2.1.6.1 Introduction

UNICORE’s RESTful APIs require configuration of the mechanisms for end user authentication, which will check the
supplied credentials and map the user to a distinguished name (DN).

This configuration is done in the container config file (typically uas.config or container.properties).

The enabled authentication options and their order are configured using a list of enabled mechanisms. For example,

5.2. UNICORE/X 147

UNICORE Docs

container.security.rest.authentication.order=FILE UNITY-OAUTH X509

As you can see, you can use one or more authentication methods, UNICORE will try all configured authentication
options in order.

For each enabled option, a set of additional properties is used to configure the details (for example the Unity address).

5.2.1.6.2 Username-password file

The FILE mechanism uses a local map file containing username, password and the DN. Required configuration is the
location of the file.

container.security.rest.authentication.FILE.class=eu.unicore.services.rest.security.
→˓FilebasedAuthenticator
container.security.rest.authentication.FILE.file=conf/rest-users.txt

The file format is:

#
on each line:
username:hash:salt:DN
#
demouser:<...>:<...>:CN=Demo User, O=UNICORE, C=EU

i.e. each line gives the username, the hashed password, the salt and the user’s DN, separated by colons. To generate
entries, i.e. to hash the password correctly, the md5sum utility can be used. For example, if your intended password is
test123, you could do

$ SALT=$(tr -dc "A-Za-z0-9_$&!=+#" < /dev/urandom | head -c 16 | xargs)
$ echo "Salt is ${SALT}"
$ echo -n "${SALT}test123" | md5sum

which will output the salted and hashed password. Here we generate a random string as the salt. Enter these together
with the username, and the DN of the user into the password file.

5.2.1.6.3 Unity authentication using OAuth Bearer token

This mechanism uses the OAuth token sent from the client (HTTP Authorization: Bearer ... header) to au-
thenticate to Unity. In Unity terms, this uses the endpoint of type SAMLSoapIdP (or SAMLUnicoreSoapIdP) with
authenticator of type oauth-rp with cxf-oauth-bearer.

container.security.rest.authentication.UNITY-OAUTH.class=eu.unicore.services.rest.
→˓security.UnityOAuthAuthenticator
container.security.rest.authentication.UNITY-OAUTH.address=https://localhost:2443/
→˓unicore-soapidp-oidc/saml2unicoreidp-soap/AuthenticationService

You can configure an additional validation of the Unity assertions using the configured trusted assertion issuer certifi-
cate(s):

validate the received assertions?
container.security.rest.authentication.UNITY-OAUTH.validate=true

148 Chapter 5. Administrator Documentation

UNICORE Docs

For this to work, UNICORE needs to public key of the Unity server as one of the trusted assertion issuers, please refer
to the relevant section on trusted assertion issuers in the manual.

5.2.1.6.4 Unity authentication using username/password

This mechanism takes the username/password sent from the client (HTTP Basic auth) and uses this to authenticate to
Unity, retrieving an authentication assertion.

container.security.rest.authentication.UNITY.class=eu.unicore.services.rest.security.
→˓UnitySAMLAuthenticator
container.security.rest.authentication.UNITY.address=https://localhost:2443/unicore-
→˓soapidp/saml2unicoreidp-soap/AuthenticationService

You can configure an additional validation of the Unity assertions using the configured trusted assertion issuer certifi-
cate(s):

validate the received assertions?
container.security.rest.authentication.UNITY.validate=true

For this to work, UNICORE needs to public key of the Unity server as one of the trusted assertion issuers, please refer
to the relevant section on trusted assertion issuers in the manual.

5.2.1.6.5 OAuth token authentication with an OIDC server

This mechanism checks the OAuth token issued by an OIDC server such as Keycloak directly with the issuing server.

container.security.rest.authentication.OAUTH.class=eu.unicore.services.rest.security.
→˓OAuthAuthenticator
container.security.rest.authentication.OAUTH.address=https://your.server/auth/realms/
→˓your_realm/protocol/openid-connect/userinfo

UNICORE will use the user’s OAuth token to make a call to the userinfo endpoint, effectively checking if that token
is (still) valid.

You can alternatively use the introspect endpoint, where UNICORE acts as an OAuth client with client ID and secret
to check the token’s validity and get user info. In this case you need to set validate=true and provide client ID and
secret

container.security.rest.authentication.OAUTH.address=https://your.server/auth/realms/
→˓your_realm/protocol/openid-connect/token/introspect
container.security.rest.authentication.OAUTH.validate=true
container.security.rest.authentication.OAUTH.clientID=your-client-id
container.security.rest.authentication.OAUTH.clientSecret=your-client-secret

The parameter dnTemplate is used to define the DN that will be assigned to authenticated users, where the %param
parameters will be replaced by the corresponding parameters from the (validated OIDC token) The default template is
UID=%email.

container.security.rest.authentication.OAUTH.dnTemplate=UID=%email

Successful OAuth authentication can assign the role and set the username based on the reply from the OIDC server. To
enable this, you need to define templates for setting the role and/or the user ID. For example, to assign role “user” to
each successfully authenticated request, and to use the “login_name” attribute in the token as the UNIX uid,

5.2. UNICORE/X 149

UNICORE Docs

container.security.rest.authentication.OAUTH.roleTemplate=user
container.security.rest.authentication.OAUTH.uidTemplate=%login_name

This can be overriden later by the configured attribute sources.

5.2.1.6.6 X.509 certificate

UNICORE supports X.509 client certificates for authentication.

container.security.rest.authentication.order= ... X509 ...

container.security.rest.authentication.X509.class=eu.unicore.services.rest.security.
→˓X509Authenticator

5.2.1.6.7 PAM

This authentication module allows to authenticate users with the username and password that they have on the host
running UNICORE/X.

container.security.rest.authentication.order= ... PAM ...

container.security.rest.authentication.PAM.class=eu.unicore.services.rest.security.
→˓PAMAuthenticator
container.security.rest.authentication.PAM.dnTemplate=CN=%s, OU=pam-local-users

The parameter dnTemplate is used to define which DN will be assigned to authenticated users, where the %s will
be replaced by the user name. In the example above, user test-user will have the DN “CN=test-user, OU=pam-local-
users”.

A successful PAM authentication will also assign a “user” role, and will set the username as the UNIX login, which
can be overriden later by the configured attribute sources.

5.2.1.6.8 Customizing JWT Delegation

UNICORE has a delegation mechanism for REST services. The delegating server creates a JWT token containing user
authentication information and signs it with its private key. The receiving server can check the signature using the
sender’s public key.

Fig. 5.5: UNICORE Delegation

The lifetime of the tokens issued by the server is 300 seconds by default, which can be changed via

150 Chapter 5. Administrator Documentation

UNICORE Docs

container.security.rest.jwt.lifetime=300

The public keys that servers use to verify the JWT signatures are by default distributed via the shared service Registry.

This works out of the box, and does not require any configuration.

However, if required, you can load additional public keys for trusted services from local PEM files using the following:

container.security.rest.jwt.trustedLocalIssuer.1=<path_to_local_PEM_file>
container.security.rest.jwt.trustedLocalIssuer.2=...

For very simple cases, e.g. when no shared registry is used, a shared hmac secret can be configured as well. The length
of the secret must be at least 32 characters.

container.security.rest.jwt.hmacSecret=....

This secret must be the same on all the UNICORE servers that are supposed to trust each other.

Note that a server with HMAC secret defined will still trust certificate-based JWT tokens, but will always use HMAC
to sign its own delegation tokens.

5.2.1.7 Attribute sources

The authorization process in UNICORE/X requires that each UNICORE user (identified by an X.500 DN) is assigned
some attributes such as her role. Attributes are also used to subsequently run tasks for the authorized user and possibly
can be used for other purposes as well (for instance for accounting).

Therefore, the most important item for security configuration is selecting and maintaining a so called attribute source
(called sometimes Attribute Information Point, AIP), which is used by USE to assign attributes to UNICORE users.

Several attribute sources are available, that can even be combined for maximum flexibility and administrative control.

There are two kinds of attribute sources:

• Classic or static attribute sources, which are used BEFORE authorization. Those attribute sources maintain a
simple mappings of user certificates (or DNs) to some attributes. The primary role of those sources is to provide
attributes used for authorization, but also incarnation attributes may be assigned.

• Dynamic attribute sources, which are used AFTER authorization, only if it was successful. Therefore, these
attribute sources can assign only the incarnation attributes. The difference is that attributes are collected for
already authorized users, so the attributes can be assigned in dynamic way not only using the user’s identity but
also all the static attributes. This feature can be used for assigning pool accounts for authorized users or adding
additional supplementary gids basing on user’s Virtual Organization.

5.2.1.7.1 UNICORE incarnation and authorization attributes

Note that actual names of the attributes presented here are not very important. Real attribute names are defined by
attribute source (advanced attribute sources, like Unity/SAML attribute source, even provide a possibility to choose
what attribute names are mapped to internal UNICORE attributes). Therefore, it is only important to know the concepts
represented by the internal UNICORE attributes. On the other hand the values which are defined below are important.

The attributes in UNICORE can be multi-valued.

There are two special authorization attributes:

5.2. UNICORE/X 151

UNICORE Docs

• role - represents an abstract user’s role. The role is used in a default (and rarely changed) UNICORE authoriza-
tion policy and in authorization process in general. There are several possible values that are recognized by the
default authorization policy:

– user - value specifies that the subject is allowed to use the site as a normal user (submit jobs, get results,
. . .).

– admin - value specifies that the subject is an administrator and may do everything. For example, may submit
jobs, get results of jobs of other users and even delete them.

– banned - user with this role is explicitly banned and all her request are denied.

– anything else - means that user is not allowed to do anything serious. Some very basic, read-only operations
are allowed, but this is a technical detail. Also access to owned resources is granted, what can happen if
the user had the user role before. Typically, it is a good practice to use value banned in such case.

• virtualOrganisations - represents an abstract federated group of the user. By default it is not used directly
anywhere in the core stack, but several subsystems (as dynamic attribute sources or jobs accounting) may be
configured to use it.

There are several attributes used for incarnation:

• xlogin - specifies which local user id (in UNIX called uid) should be assigned to the UNICORE user.

• group - specifies the primary group (primary gid) that the UNICORE user should get.

• supplementaryGroups - specifies all supplementary groups the UNICORE user should get.

• addDefaultGroups - boolean attribute saying whether groups assigned to the Xlogin (i.e. the local uid of the
UNICORE user) in the operating system should be additionally added for the UNICORE user.

• queue - define which BSS queues are allowed for the particular user.

Finally, UNICORE can consume other attributes. All other attributes can be used only for authorization or in more
advanced setups (for instance, using the UNICORE/X incarnation tweaker). Currently, all such additional attributes
which are received from attribute source are treated as XACML attributes and are put into XACML evaluation context.
This feature is rather rarely used, but it allows for creating a very fine grained authorization policies using custom
attributes.

Particular attribute source define how to assign these attribute to users. Not always all types of attributes are supported
by the attribute source, e.g. XUUDB can not define (among others) per-user queues or VOs.

After introducing all the special UNICORE attributes, it must be noted that those attributes are used in two ways. Their
primary role is to strictly define what is allowed for the user. For instance, the xlogin values specify the valid uids
from which the user may choose one. One exception here is Add operating system groups - user is always able to set
this according to his/her preference.

The second way of using those attributes is to specify the default behavior, when the user is not expressing a preference.
E.g. a default group (which must be single valued) specify which group should be used, if user doesn’t provide any.

Attribute sources define the permitted values and default values for the attributes in various ways. Some use conventions
(e.g. that first permitted value is a default one), some use a pair of real attributes to define the valid and default values
of one UNICORE attribute.

152 Chapter 5. Administrator Documentation

UNICORE Docs

5.2.1.7.2 Configuring Attribute Sources

Note: The following description is for configuring the classic, static attribute sources. However, everything written
here applies also to configuration of the dynamic sources: the only difference is that instead of container.security.
attributes. property prefix, the container.security.dynamicAttributes. should be used.

The full list of options related to attribute sources is available here.

To configure the static attribute sources, the container.security.attributes.order property in the configuration
file is used. This is a space-separated list with attribute sources names, where the named attribute sources will be queried
one after the other, allowing you to query multiple attribute sources, override values, etc.

A second property, container.security.attributes.combiningPolicy, allows you to control how attributes
from different sources are combined.

For example, the following configuration snippet

#
Authorisation attribute source configuration
#
container.security.attributes.order=XUUDB FILE

#
Combining policy
#
MERGE_LAST_OVERRIDES (default), FIRST_APPLICABLE, FIRST_ACCESSIBLE or MERGE
container.security.attributes.combiningPolicy=MERGE_LAST_OVERRIDES

will declare two attribute sources, XUUDB and FILE, which should be both queried and combined using the
MERGE_LAST_OVERRIDES policy.

Since multiple attribute sources can be queried, it has to be defined how attributes will be combined. For example,
assume you have both XUUDB and FILE, and both return a xlogin attribute for a certain user, say xlogin_1 and xlogin_2.

The different combining policies are:

• MERGE_LAST_OVERRIDES: new attributes override those from previous sources. In our example, the result would
be xlogin_2.

• FIRST_APPLICABLE: the attributes from the first source that returned a non empty list of attributes are used. In
our case this would be xlogin_1. If there were no xlogin attribute for the user in XUUDB then xlogin_2 would
be returned.

• FIRST_ACCESSIBLE: the attributes from the first source that is accessible are used. In our case this would be
xlogin_1. This policy is useful for redundant attribute sources. E.g. you can configure two instances of XUUDB
with the same users data; the 2nd one will be tried only if the first one is down.

• MERGE: attributes are merged. In our example, the result would be xlogin_1, xlogin_2, and the user would be
able to choose between them.

Each of the sources needs a mandatory configuration option defining the Java class, and several optional properties that
configure the attribute source. In our example, one would need to configure both the XUUDB and the FILE source:

container.security.attributes.XUUDB.class=...
container.security.attributes.XUUDB.xuudbHost=...
...

(continues on next page)

5.2. UNICORE/X 153

UNICORE Docs

(continued from previous page)

container.security.attributes.FILE.class=...
container.security.attributes.FILE.file=...
...

Additionally, you can mix several combining policies together (see Chained attribute source below for details).

5.2.1.7.3 Available attribute sources

XUUDB

The XUUDB is the standard option in UNICORE. It has the following features:

• Web service interface for querying and administration. It is suitable for serving data for multiple clients. Usually,
it is deployed to handle attributes for a whole UNICORE site running multiple service containers.

• Access can be protected by a client-authenticated SSL.

• XUUDB can store static mappings of UNICORE users: the local xlogin, role and project attributes (where
project maps to Unix groups).

• XUUDB since version 2 can also assign attributes in a dynamic way, e.g. from pool accounts.

• Multiple xlogins per DN, where the user can select one.

• Entries are grouped using the so-called Grid Component ID (GCID). This makes it easy to assign users different
attributes when accessing different UNICORE/X servers.

Full XUUDB documentation is available from XUUDB Manual.

To enable and configure the XUUDB as a static attribute source, set the following properties in the configuration file:

container.security.attributes.order=... XUUDB ...
container.security.attributes.XUUDB.class=eu.unicore.uas.security.XUUDBAuthoriser
container.security.attributes.XUUDB.xuudbHost=https://<xuudbhost>
container.security.attributes.XUUDB.xuudbPort=<xuudbport>
container.security.attributes.XUUDB.xuudbGCID=<your_gcid>

To enable and configure the XUUDB as a dynamic attribute source, set the following properties in the configuration
file:

container.security.dynamicAttributes.order=... XUUDB ...
container.security.dynamicAttributes.XUUDB.class=eu.unicore.uas.security.xuudb.
→˓XUUDBDynamicAttributeSource
container.security.dynamicAttributes.XUUDB.xuudbHost=https://<xuudbhost>
container.security.dynamicAttributes.XUUDB.xuudbPort=<xuudbport>

154 Chapter 5. Administrator Documentation

UNICORE Docs

SAML Virtual Organizations aware attribute source (e.g. Unity)

UNICORE supports SAML attributes, which can be either fetched by the server or pushed by the clients, using a Virtual
Organisations aware attribute source. In the most cases Unity is deployed as a server providing attributes and handling
VOs, as it supports all UNICORE features and therefore offers a greatest flexibility, while being simple to adopt. SAML
attributes can be used only as a static attribute source.

The SAML attribute source is described in a separate section Virtual Organisations (VO) Support.

File attribute source

This attribute source uses a single map file to map DNs to xlogin, role and other attributes (only static mappings are
possible). It is useful when you don’t want to setup an additional service like the XUUDB, or when you want to locally
override attributes for selected users (e.g. to ban somebody).

In contrast to the XUUDB, the File attribute source can store all types of attributes, while the XUUDB only handles
role, uid and group.

To use, set

container.security.attributes.order=... FILE ...
container.security.attributes.FILE.class=eu.unicore.uas.security.file.FileAttributeSource
container.security.attributes.FILE.file=<your map file>
container.security.attributes.FILE.matching=<strict|regexp>

The map file itself has the following format:

<?xml version="1.0" encoding="UTF-8"?>
<fileAttributeSource>
<entry key="USER DN">

<attribute name="role">
<value>user</value>

</attribute>
<attribute name="xlogin">

<value>unixuser</value>
<value>nobody</value>
...

</attribute>
...

</entry>
...

</fileAttributeSource>

You can add an arbitrary number of attributes and attribute values.

The matching option controls how a client’s DN is mapped to a file entry. In strict mode, the canonical representation
of the key is compared with the canonical representation of the argument. In regexp mode the key is considered a Java
regular expression and the argument is matched with it. When constructing regular expressions a special care must be
taken to construct the regular expression from the canonical representation of the DN. The canonical representation is
defined here (but you don’t have to perform the two last upper/lower case operations). In 90% of all cases (no multiple
attributes in one RDN, no special characters, no uncommon attributes) it just means that you should remove extra spaces
between RDNs.

The evaluation is simplistic: the first entry matching the client is used (which is important when you use regular
expressions).

5.2. UNICORE/X 155

http://download.oracle.com/javase/6/docs/api/javax/security/auth/x500/X500Principal.html#getName(java.lang.String)

UNICORE Docs

The attributes file is automatically refreshed after any change, before a subsequent read. If the syntax is wrong then an
error message is logged and the old version is used.

Recognized attribute names are:

• xlogin

• role

• group

• supplementaryGroups

• addOsGroups (with values true or false)

• queue

Attributes with those names (case insensitive) are handled as special UNICORE incarnation attributes. The correspon-
dence should be straightforward, e.g. the xlogin is used to provide available local OS user names for the client.

For all attributes except of the supplementaryGroups the default value is the first one provided. For
supplementaryGroups the default value contains all defined values.

You can also define other attributes - those will be used as XACML authorization attributes, with XACML string type.

PAM

This is a special attribute source which only works in conjunction with the corresponding REST authentication module.

container.security.attributes.order=... PAM ...
container.security.attributes.PAM.class=eu.unicore.services.rest.security.
→˓PAMAttributeSource

Chained attribute source

Chained attribute source is a meta source which allows you to mix different combining policies together. It is configured
as other attribute sources with two parameters (except of its class): order and combiningPolicy. The result of the
chain attribute source is the set of attributes returned by the configured chain.

Let’s consider the following example situation where we want to configure two redundant Unity servers (both serving
the same data) to achieve high availability. Additionally we want to override settings for some users using a local file
attribute source (e.g. to ban selected users, by assigning them the banned role).

The main chain configuration:
container.security.attributes.order=UNITY_CLUSTER FILE
container.security.attributes.combiningPolicy=MERGE_LAST_OVERRIDES

The FILE source cfg:
container.security.attributes.FILE.class=eu.unicore.uas.security.file.FileBasedAuthoriser
container.security.attributes.FILE.file=<your map file>

The UNITY_CLUSTER is a sub chain:
container.security.attributes.UNITY_CLUSTER.class=de.fzj.unicore.uas.security.util.
→˓AttributeSourcesChain
container.security.attributes.UNITY_CLUSTER.order=UNITY1 UNITY2
container.security.attributes.UNITY_CLUSTER.combiningPolicy=FIRST_ACCESSIBLE

(continues on next page)

156 Chapter 5. Administrator Documentation

UNICORE Docs

(continued from previous page)

And configuration of the two real sources used in the sub chain:
container.security.attributes.UNITY1.class=...
...
container.security.attributes.UNITY2.class=...
...

5.2.1.8 Virtual Organisations (VO) Support

VO (Virtual Organisation) is a quite broad concept. VO server software (such as Unity) is used to store identities
of federated entities along with their attributes. Entities are managed with the usage of groups to help administration.
Those attributes can be used e.g. for authorization purposes. It is described here how to take advantage of this approach
in any service based on the UNICORE Services Environment such as UNICORE/X, Workflow Service, etc.

In the following we use Unity as our VO service, though in principle other SAML servers can be used.

5.2.1.8.1 Overview

Features

All features below can be used in any combinations, independently:

• Unity can provide all user attributes to be used for authorization and for accessing resources, also those which
are unsupported by the more simple attribute sources (including full support for default and allowed attributes).
Therefore, it can be used as a central attribute source for multiple sites. Since attributes can be assigned in a
group scope, it is possible to use a central service with mappings, still having some of the values (for instance
Unix user IDs) which are different for each site. It is simple to assign same attribute for groups of users.

• It is possible to assign non-standard attributes and use them for authorization or for quality of service purposes.

• As it is possible (as always in UNICORE) to mix attributes from multiple attribute sources. Unity can pro-
vide federation-wide settings (for example, the UNICORE role), while local settings (like Unix gids or uids) are
assigned locally by particular sites. This is especially useful when using a dynamic attribute source as a comple-
mentary one to the static attribute source: Unity provides federation-wide authorization attributes (such as role)
and dynamic source assigns local uids/gids.

The system works in as an attribute source, attributes are pulled (fetched) by the module from a VO service specified
in a configuration file when a new request arrives. This mode is transparent for clients.

VO selection

Some of the VO features (such as authorization), require only information about all VOs the user is a member of and
associated attributes. However, in many cases it is required to assign user’s request to a particular VO and to execute
it in the VO scope. This is, for instance, needed when a special gid is assigned basing on the user’s VO or when VOs
should be charged for their jobs.

To associate a request with a VO the user has to select one or administrator can define a default which is used when user
didn’t select a VO. The user can select an effective VO using request preference selectedVirtualOrganisation.
Of course it must be one of the VOs the user is member of.

Administrator can configure a list of preferred VOs. If such a list is provided, then the first VO from the list, where the
user is a member is used when user don’t provide her own selection. See the General security options for the syntax.

5.2. UNICORE/X 157

UNICORE Docs

If it is required that all requests should have the effective VO set, then it is possible to deny other requests using
an additional rule in the authorization policy. The rule should deny all requests that doesn’t have the selectedVO
authorization attribute. See Guide to XACML security policies for details.

Supported VO (SAML) servers

This module was tested and works well with the Unity system.

There are other possibilities and you can try to use any SAML (2.0) Attribute service. We are interested in all
success/failure stories!

VO deployment planning

First of all it must be decided which VO/group (in UNICORE case it doesn’t matter whether a VO or VO subgroup is
used, all subgroups can be treated as a full-fledged VOs, and VOs are just a nick-name of top-level groups) is used by
a site.

In case when a site needs only generic, federation-wide attributes from a VO, a group which is common for all sites
should be used. Such a group can provide, for instance, the role attribute for the members. Of course, if uids are the
same across all sites, then uids can be also assigned in such VO.

In the case when a site needs also some site-specific attributes, a dedicated group should be created for the site, as
a subgroup of a VO (e.g. /VO1/sites/SiteA). VO administrators should assign VO-scoped attributes in this group and
make sure that all universal VO attributes are also replicated there. Please note that Unity allows for outsourcing
VO management on a per-group basis, so it is possible to assign administrative permissions to such group for a site
representative.

The next issue is how to handle a situation when there are multiple Unix user IDs or roles available for the user, and how
to mark the default one? To overcome this, for every incarnation attribute it is possible to define two VO attributes. The
base one can possess many values (e.g. in case of UIDs every value is a different UID) while the additional attribute
holds a single default value. When there is no need for multiple values then the base attribute can be used alone. When
default attribute is defined then its value is used unless a user provided some preferences. Of course, such preferences
must be valid, i.e. be included in the allowed values of the base attribute.

Details on what attributes are used for those purposes are presented in the following section.

5.2.1.8.2 Configuration

This sections describes the default configuration file format which is used to configure the SAML attribute source and
provides detailed and comprehensive information on all configuration options. In most cases, the defaults are fine - you
can refer to the HOWTO for a short quick start information.

Some of the configuration options require a value of a VO/GROUP type. Whenever it is needed it should be written in
the following way:

/VO[/group1[/subgroup2[...]]]

where elements in square brackets are optional. E.g. /Math/users denotes a group users of a VO called Math.

In case of UNICORE/X and other USE servers the configuration is provided in a separate file, by default the saml.
config from the configuration directory of the server (you can change location and name of this file, see below). It
holds generic VO configuration which is not dependent to the actual server used - the most of settings is configured
there. This file options are described below.

158 Chapter 5. Administrator Documentation

UNICORE Docs

To enable the VO subsystem certain settings are also required in the main server’s configuration file. You have to enable
the SAML Attribute Source. You can use only one or even use multiple instances. The latter situation occurs when you
want to support multiple VOs (from one or multiple VO servers) - then you have to define one attribute source per VO
(or VO group).

Example with a VO attribute sources and also with local XUUDB. Local data from XUUDB (if it exists) will override
attributes received from VOs:

container.security.attributes.order=SAML XUUDB

container.security.attributes.SAML.class=eu.unicore.uas.security.saml.SAMLAttributeSource
container.security.attributes.SAML.configurationFile=conf/saml.config

... xuudb configuration omitted ...

Before proceeding to fill the SAML/VO configuration it is suggested to prepare a truststore, which should contain
ONLY the certificates of the trusted SAML servers. Note that this file must not contain any CA certificates, only the
trusted VO servers’ certificates! This file is optional, but will increase security.

Logging configuration is done by means of the standard UNICORE logging configuration file. See Logging configu-
ration section for possible settings related to the SAML subsystem.

Main SAML (VO) configuration file

The following sections provide complete reference of available options for the main configuration file (usually saml.
config).

5.2. UNICORE/X 159

UNICORE Docs

Property name Type Default value
/ mandatory

Description

saml.attributeQuery.password string If certificate-based authentication to the
SAML server is disabled, you might be able
to use username/password. This sets the
password.

saml.attributeQuery.username string If certificate-based authentication to the
SAML server is disabled, you might be able
to use username/password. This sets the
username.

saml.attributeQueryURL string localhost Full address (URL) of SAML Attribute
Query service.

saml.cacheTtl integer num-
ber

600 Controls pulled attributes cache. Set to neg-
ative integer to disable the caching or to pos-
itive number - lifetime in seconds of cached
entries.

saml.enableGenericAttributes [true, false] true If turned on, then not only the recognized
UNICORE attributes are processed, but also
all others, which can be used for authoriza-
tion.

saml.group string Group which is accepted by this attribute
source. UNICORE/X will honor only at-
tributes with exactly this scope or global (i.e.
without scope set)

saml.localServerURI string Can contain a local server SAML identifier
to be used in SAML requests. If unset, then
the server’s X.500 DN is used.

saml.truststore..* string can
have subkeys

Properties starting with this prefix are used
to configure validation of SAML assertion
issuers certificates. Trust anchors should
contain only the trusted SAML servers cer-
tificates. All options are the same as those
for other UNICORE truststores.

saml.unicoreAttribute..* string can
have subkeys

Properties starting with this prefix are used
to configure mappings of SAML attributes
to UNICORE internal ones.

saml.verifySignatures [true, false] true Additional security for the pulled assertions
(except transport level which is always on)
can be achieved by verification of signatures
of the received assertions. The key which is
used for verification must be present in the
SAML truststore.

The following table shows options, which are used to define mappings of SAML attributes to UNICORE incarna-
tion attributes (the available names of UNICORE incarnation attributes are provided in UNICORE incarnation and
authorization attributes).

160 Chapter 5. Administrator Documentation

UNICORE Docs

Property name Range of values Description
saml.unicoreAttribute.NAME URI Value must be a SAML attribute name which will

be used as a UNICORE internal incarnation attribute
NAME.

saml.unicoreAttribute.NAME.defaultURI Value must be a SAML attribute name which will be
used as a default for UNICORE internal incarnation at-
tribute NAME.

saml.unicoreAttribute.NAME.disabledANY, IGNORED When this attribute is present regardless of its value the
NAME attribute won’t be mapped.

Example mapping for Unity attributes

Note that your distribution should contain sensible defaults for Unity attribute mappings, which does not need to be
modified.

standard settings for the xlogin mapping, however let's ignore pushed xlogins
saml.unicoreAttribute.xlogin=urn:unicore:attrType:xlogin
saml.unicoreAttribute.xlogin.default=urn:unicore:attrType:defaultXlogin
saml.unicoreAttribute.xlogin.pushDisabled=

#standard role mapping
saml.unicoreAttribute.role=urn:unicore:attrType:role
saml.unicoreAttribute.role.default=urn:unicore:attrType:defaultRole

#supplementary groups are stored in a non standard attribute
saml.unicoreAttribute.supplementaryGroups=urn:ourCompany:secondaryGids

#and group - without default
saml.unicoreAttribute.group=urn:unicore:attrType:primaryGid

#queue mapping is defined, but will be ignored (disabled)
saml.unicoreAttribute.queue=urn:unicore:attrType:queue
saml.unicoreAttribute.queue.default=urn:unicore:attrType:defaultQueue
saml.unicoreAttribute.queue.disable=

addDefaultGroups - is not defined, so won't be mapped

#getting the user's groups is always a good idea
saml.unicoreAttribute.virtualOrganisations=urn:SAML:voprofile:group

Logging configuration

All components use the usual log4j/2 logging mechanism. All events are logged with unicore.security.saml
prefix. The reporting class name is appended.

As an example, a configuration for logging all events for the SAML / VO subsystem can be specified as follows:

logger.saml.name=unicore.security.saml
logger.saml.level=debug

5.2. UNICORE/X 161

UNICORE Docs

5.2.1.8.3 VO (SAML) configuration HOWTOs

SAML and UNICORE - basic case

This section shows all the steps which are required to setup a UNICORE/X server and Unity to work as SAML attribute
source. In this scenario we will use Unity to centrally store mappings of user DNs to UNIX logins (Xlogins) and roles
of of those users. The UNICORE/X server will then query (pull) attributes from Unity, similar to using an XUUDB.

Note: We write UNICORE/X in the following, but any server based on the UNICORE Services Environment (Registry,
Workflow, etc) works the same way.

The required steps are:

1. Add Unity’s CA certificate to the UNICORE/X truststore (so SSL connections can be established).

2. Add UNICORE/X’s CA certificate to the Unity server’s truststore (so SSL connections can be established).

3. Add the UNICORE/X server’s DN (from its certificate) as a member to the Unity service. You don’t have to make
it a member of any particular VO (or group). However it must have the read permission to all groups where its
users will be placed. In Unity, this corresponds to the Priviledged Inspector role (check Unity documentation
for details).

4. Check that UNICORE/X can properly authenticate to Unity on the SAML endpoint that is used to query attributes.
Generally this will be via the UNICORE/X certificate, if that is not possible, you’ll need to setup an additional
username identity for the entity created in Step 3, and setup password authentication.

5. Create a VO (possibly with subgroups). Add users to the group. Here we will assume this group is /Math-
VO/UUDB/SiteA. Next assign them in the scope of the group attribute urn:unicore:attrType:xlogin with
the value of Unix UID for the user, and attribute urn:unicore:attrType:role with the value of the user’s
role (usually its just user). Note that if you want to assign the same Xlogin/role to multiple users then you can
define Unity group attributes and set them for the whole /Math-VO/UUDB/SiteA group.

6. Enable the SAML attribute source in the UNICORE server. Here we will configure it as the primary source and
leave XUUDB to provide local mappings (which can override data fetched from Unity). You should have the
following entries:

container.security.attributes.order=SAML XUUDB
container.security.attributes.combiningPolicy=MERGE_LAST_OVERRIDES
... xuudb configuration omitted

container.security.attributes.SAML.class=eu.unicore.uas.security.saml.
→˓SAMLAttributeSource

7. Configure the SAML attribute source (typically in the saml.config) file as follows:

saml.group=/Math-VO/UUDB/SiteA

saml.verifySignatures=true
saml.truststore.type=directory
saml.truststore.directoryLocations.1=/opt/unicore/certs/unity/*.pem

saml.localServerURI=https://example.org:7777

saml.cacheTtl=20

(continues on next page)

162 Chapter 5. Administrator Documentation

https://unity-idm.eu/

UNICORE Docs

(continued from previous page)

saml.attributeQueryURL=https://unity.example.org/unicore-soapidp/saml2unicoreidp-
→˓soap/AssertionQueryService
#saml.attributeQuery.username=UX-VENUS
#saml.attributeQuery.password=the!njs!!

Mapping of Unity attributes (right side) to the special, recognized by UNICORE
incarnation attributes (left)
saml.unicoreAttribute.xlogin=urn:unicore:attrType:xlogin
saml.unicoreAttribute.xlogin.default=urn:unicore:attrType:defaultXlogin
saml.unicoreAttribute.role=urn:unicore:attrType:role
saml.unicoreAttribute.role.default=urn:unicore:attrType:defaultRole
saml.unicoreAttribute.group=urn:unicore:attrType:primaryGid
saml.unicoreAttribute.group.default=urn:unicore:attrType:defaultPrimaryGid
saml.unicoreAttribute.supplementaryGroups=urn:unicore:attrType:supplementaryGids
saml.unicoreAttribute.supplementaryGroups.
→˓default=urn:unicore:attrType:defaultSupplementaryGids
saml.unicoreAttribute.addDefaultGroups=urn:unicore:attrType:addDefaultGroups
saml.unicoreAttribute.queue=urn:unicore:attrType:queue
saml.unicoreAttribute.queue.default=urn:unicore:attrType:defaultQueue
saml.unicoreAttribute.virtualOrganisations=urn:SAML:voprofile:group

8. In the SAML truststore directory (/opt/unicore/certs/unity/ in this case) put the Unity certificate (NOT the CA
certificate) as a PEM file, with pem extension.

(Very) advanced example: Unity and UNICORE - using fine grained authorization

In this scenario we will enhance the first one to use custom authorization attributes in UNICORE policy. To do so
ensure that you have this setting in the saml.config file:

saml.enableGenericAttributes=true

Then you can modify the XACML policy to require certain VO attributes.

Important fact to note here is how the user’s group membership is encoded as an XACML attribute. By default it
is an attribute of string type (so XACML DataType=”http://www.w3.org/2001/XMLSchema#string”) with its name
(AttributeId) equal to urn:SAML:voprofile:group. The example policy below uses this attribute.

The following XACML fragment allows for reaching TargetSystemFactory service only for the users which are
both members of VO Example-VO and a VO group /Math-VO/UUDB/SiteA. Moreover, those users also must have
a standard UNICORE/X attribute role with a value user. It means that in Unity, UNICORE users must have
urn:unicore:attrType:role attribute defined (it is the standard setting) with a value user.

<Rule RuleId="AcceptTSF" Effect="Permit">
<Description>

Accept selected users to reach TSF
</Description>

<Target>
<Resources>
<Resource>

<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-
→˓equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#anyURI">
→˓TargetSystemFactoryService</AttributeValue>

(continues on next page)

5.2. UNICORE/X 163

UNICORE Docs

(continued from previous page)

<ResourceAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema
→˓#anyURI" AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/>

</ResourceMatch>
</Resource>

</Resources>
</Target>
<Condition>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-
→˓only">

<SubjectAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema
→˓#string" AttributeId="role"/>

</Apply>
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">user</

→˓AttributeValue>
</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:any-of-all">

<Function FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal
→˓"/>

<SubjectAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema
→˓#string" AttributeId="urn:SAML:voprofile:group"/>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-bag">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">/

→˓Example-VO</AttributeValue>
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">/

→˓Math-VO/UUDB/SiteA</AttributeValue>
</Apply>

</Apply>
</Apply>

</Condition>
</Rule>

5.2.1.9 The UNICORE persistence layer

UNICORE stores its state in data bases. The information that is stored depends on the services that are running in the
container, and can include:

• user’s resources (instances of storage, job and other services)

• jobs

• workflows

• etc.

The job directories themselves reside on the target system, but UNICORE keeps additional information (like, which
UNICORE user owns a particular job).

The data on user resources is organised by service name, i.e. each service (for example, JobManagement) stores its
information in a separate database table (having the same name as the service, e.g. JobManagement).

The UNICORE persistence layer offers three kinds of storage:

• on the filesystem of the UNICORE/X server (using the H2 database engine), which is generally the default;

164 Chapter 5. Administrator Documentation

UNICORE Docs

• on a database server (MySQL, PostgreSQL, or the server mode of H2);

• in-memory, i.e. all info is lost on server restart.

While the first one is very easy to setup, and easy to manage, the second option allows advanced setups like clus-
tering/load balancing configurations involving multiple UNICORE/X servers sharing the same persistent data. Using
MySQL or PostgreSQL has the additional benefit that the server starts up faster.

Data migration from one database system to another is in principle possible, but you should select the storage carefully
before going into production. In general, if you do not require clustering/load balancing, you should choose the default
filesystem option, since it is less administrative effort.

5.2.1.9.1 Configuring the persistence layer

Peristence properties are configured in two files:

• container.properties for all service data

• xnjs.properties for job data

It is recommended to specify a configuration file using the persistence.config property. Thus, persistence configu-
ration can be easily shared between the job (XNJS) data and other service data. If the persistence.config property
is set, the given file will be read as a Java properties file, and the properties will be used.

Note: All properties can be specified on a per table basis, by appending .<TABLENAME> to the property name. This
means you can even select different storage systems for different data, e.g. store service data on the filesystem and jobs
in MySQL. The table name is case-sensitive.

5.2. UNICORE/X 165

UNICORE Docs

Property name Type Default value
/ mandatory

Description

persis-
tence.cache.enable.*

[true, false] can
have subkeys

true Enable caching.

persis-
tence.cache.maxSize.*

integer number can
have subkeys

10 Maximum number of elements in the cache
(default: 10).

persistence.class.* string can have sub-
keys

eu.unicore.persist.impl.H2PersistThe persistence implementation class,
which controls with DB backend is used.

persis-
tence.cluster.config.*

string can have sub-
keys

Clustering configuration file.

persistence.config filesystem path Allows to specify a separate properties file
containing the persistence configuration.

persistence.database.* string can have sub-
keys

The name of the database to connect to (e.g.
when using MySQL).

persistence.directory.* string can have sub-
keys

The directory for storing data (embedded
DBs).

persistence.driver.* string can have sub-
keys

The database driver. If not set, the default
one for the chosen DB backend is used.

persis-
tence.h2.cache_size.*

integer number can
have subkeys

1024 (H2) Cache size.

persistence.h2.options.* string can have sub-
keys

(H2) Further options separated by ‘;’.

persis-
tence.h2.server_mode.*

[true, false] can
have subkeys

false (H2) Connect to a H2 server.

persistence.host.* string can have sub-
keys

localhost The database host.

persis-
tence.max_connections.*

integer number can
have subkeys

1 Connection pool maximum size.

persis-
tence.mysql.tabletype.*

string can have sub-
keys

MyISAM (MySQL) Table type (engine) to use.

persis-
tence.mysql.timezone.*

string can have sub-
keys

UTC (MySQL) Server timezone.

persis-
tence.mysql.useSSL.*

[true, false] can
have subkeys

false (MySQL) Connect using SSL.

persistence.password.* string can have sub-
keys

empty string The database password.

persis-
tence.pgsql.useSSL.*

[true, false] can
have subkeys

true (PostgreSQL) Connect using SSL.

persis-
tence.pool_timeout.*

integer number can
have subkeys

3600 Connection pool timeout when trying to get
a connection.

persistence.port.* integer number can
have subkeys

The database port. If not set, the default port
for the chosen DB backend is used.

persistence.user.* string can have sub-
keys

sa The database username.

166 Chapter 5. Administrator Documentation

UNICORE Docs

Caching

By default, caching of data in memory is enabled. It can be switched off and configured on a per-table (i.e. per entity
class) basis. If you have a lot of memory for your server, you might consider increasing the cache size for certain
components.

For example, to set the maximum size of the JOBS cache to 1000, you’d configure

persistence.cache.maxSize.JOBS=1000

The H2 engine

H2 is a pure Java database engine. It can be used in embedded mode (i.e. the engine runs in-process), or in server
mode, if multiple UNICORE servers should use the same database server. For more information, visit http://www.
h2database.com.

Connection URL

In H2 server mode, the connection URL is constructed as follows:

jdbc:h2:tcp://<persistence.host>:<persistence.port>/<persistence.directory>/<table_name>

The MySQL Engine

The MySQL database engine does not need an introduction. To configure its use for UNICORE persistence data, you
need to set

persistence.class=de.fzj.unicore.persist.impl.MySQLPersist

To use MySQL, you need access to an installed MySQL server. It is beyond the scope of this guide to describe in
detail how to setup and operate MySQL. The following is a simple sequence of steps to be performed for setting up the
required database structures:

• open the mysql console

• create a dedicated user, say unicore who will connect from some server in the domain yourdomain.com or from
the local host:

CREATE USER 'unicore'@'%.yourdomain.com' identified by 'some_password' ;
CREATE USER 'unicore'@'localhost' identified by 'some_password' ;

• create a dedicated database for use by the UNICORE/X server:

CREATE DATABASE 'unicore_data_demo_site';
USE 'unicore_data_demo_site';

• allow the unicore user access to that database:

GRANT ALL PRIVILEGES ON 'unicore_data_demo_site.*' to 'unicore'@'localhost';
GRANT ALL PRIVILEGES ON 'unicore_data_demo_site.*' to 'unicore'@'%.yourdomain.com';

The UNICORE persistence properties would in this case look like this:

5.2. UNICORE/X 167

http://www.h2database.com
http://www.h2database.com

UNICORE Docs

persistence.class=de.fzj.unicore.persist.impl.MySQLPersist
persistence.database=unicore_data_demo_site
persistence.user=unicore
persistence.password=some_password
persistence.host=<your_mysql_host>
persistence.port=3306
persistence.mysql.tabletype=MyISAM

If you want to store data from multiple UNICORE servers, make sure to use a different database for each of them.

The PostgreSQL engine

To configure PostgreSQL for UNICORE persistence data, you need to set

persistence.class=de.fzj.unicore.persist.impl.PGSQLPersist

You will need access to a PostgreSQL server, and configure access to a database. We recommend a dedicated Post-
greSQL user. Here is an example for how to setup access.

• create a dedicated PostgreSQL user unicore (and set a password)

$ sudo -u postgres createuser -P unicore

• create a database for holding UNICORE data

$ sudo -u postgres createdb -O unicore unicore_data

• Check that the PostgreSQL server allows for password authentication for the UNICORE user. Ensure that in
pg_hba.conf you have lines similar to these:

host all all 127.0.0.1/32 md5
host all all ::1/128 md5

• If UNICORE server(s) and PostgreSQL servers are on different hosts, adapt hostnames accordingly.

• You can check that the connection works by invoking the following on the UNICORE/X server:

$ psql -h localhost unicore_data unicore

The UNICORE persistence properties would in this case look like this:

persistence.class=de.fzj.unicore.persist.impl.PGSQLPersist
persistence.database=unicore_data
persistence.user=unicore
persistence.password=some_password
persistence.host=<your_postgresql_host>
persistence.port=5432

168 Chapter 5. Administrator Documentation

UNICORE Docs

5.2.1.10 Interfacing UNICORE/X to the TSI

The link from UNICORE/X to the UNICORE TSI, the component that deals with the actual job execution and file
system access is configured using a properties file named tsi.config. It is included from the main config file.

Here’s an overview of the most important properties that can be set in this file:

Property name Type Default value
/ mandatory

Description

XNJS.allowUserExecutable [true, false] true Whether to allow user-defined executables.
If set to false, only applications defined in
the IDB may be run.

XNJS.autosubmit [true, false] false Automatically submit a job to the BSS with-
out waiting for an explicit client start.

XNJS.bssResubmitCount integer >= 1 3 How often should UNICORE/X try to sub-
mit a job to the BSS.

XNJS.bssResubmitDelay integer >= 1 10 Minimum delay (in seconds) between at-
tempts to submit a job to the BSS.

XNJS.defaultUmask integer num-
ber

0027 Default umask to be used for jobs.

XNJS.filespace string Directory on the TSI for the job directories.
Must be world read/write/executable.

XNJS.filespaceUmask integer num-
ber

0002 Umask to be used for creating the base di-
rectory for job directories.

XNJS.idbfile.* string can
have subkeys

IDB configuration.

XNJS.localtsi.* string can
have subkeys

Properties for configuring the embedded
Java TSI (if used). See separate docs.

XNJS.numberofworkers integer >= 0 4 Number of XNJS worker threads.
XNJS.parameterSweepLimit integer >= 0 200 Upper limit for number of jobs generated in

a single parameter sweep.
XNJS.staging.* string can

have subkeys
Properties for configuring the data staging
and I/O components. See separate docs.

XNJS.strictUserInputChecking [true, false] false Whether to be restrictive in checking user-
supplied arguments and environment vari-
ables. Set to true if you do not want ANY
user code to run on your TSI node.

Most of the other settings in this file are used to configure the internals and should usually be left at their default values.

5.2.1.10.1 The UNICORE TSI

This section describes installation and usage of the UNICORE TSI . This is a mandatory step if you want to interface to
batch systems such as Slurm to efficiently use a compute cluster.

Note: Without this component, all jobs will run on the UNICORE/X server, under the user id that started UNICORE/X.

In a nutshell, you have to perform the following steps:

• Install the UNICORE TSI on your cluster front end node(s)

• In the UNICORE TSI configuration, edit the tsi.properties file

5.2. UNICORE/X 169

UNICORE Docs

• On the UNICORE/X server, edit tsi.config and simpleidb files

• Start the newly installed TSI (as root in a multiuser setting)

• Restart UNICORE/X

Installation of the correct TSI

The TSI is a service that is running on the target system. In case of a cluster system, you’ll need to install it on the
frontend machine(s), i.e. the machine from where your jobs are submitted to the batch system. There are different
variants available for the different batch systems such as SLURM or Torque.

Usually, installation and start of the TSI will be performed as the root user. The TSI will then be able to change to the
current UNICORE user’s id for performing work (Note: nothing will ever be executed as root). You can also use a
normal user, but then all commands will be executed under that user’s id.

As the TSI is a crucial and sensitive service, make sure to read its documentation. This guide serves just as a quick
overview of the necessary steps.

• First, download and install the UNICORE TSI package. The UNICORE core server bundle (quickstart package)
includes the TSI in the tsi subdirectory. You should copy this folder to the correct machine first. In the following
this will be denoted by <tsidir>.

• Install the correct TSI variant by

$ cd <tsidir>
$./Install.sh

When prompted for the path, choose an appropriate one, denoted <your_tsi> in the following.

• Check the TSI configuration, especially command locations, path settings, etc.

Required TSI Configuration

Configuration is done by editing <tsi_conf_dir>/tsi.properties. At least check the following settings:

UNICORE/X machine
tsi.unicorex_machine=<UNICORE/X host>

UNICORE/X listener port (check unicorex/conf/tsi.config variable ``CLASSICTSI.
→˓replyport``
tsi.unicorex_port=7654

TSI listener port (check unicorex/conf/xnjs_legacy.xml variable ``CLASSICTSI.port``
tsi.my_port=4433

170 Chapter 5. Administrator Documentation

https://sourceforge.net/projects/unicore/files/Servers/Core/

UNICORE Docs

UNICORE/X configuration

Edit unicorex/conf/main.config and check that the tsi.config file is included:

read TSI-related settings
$include.TSI conf/tsi.config

Edit unicorex/conf/tsi.config. Check the filespace location, this is where the local job directories will be
created. On a cluster, these have to be on a shared part of the filesystem. Also, the filespace location has to be
read/write/executable for the current user. If you wish to avoid a world-executable directory, it is possible to use a
per-user location, like $HOME/UNICORE_Jobs.

Check the CLASSICTSI related properties. Set the correct value for the machine and the ports (these can usually be
left at their default values). The CLASSICTSI.machine property is a comma separated list of machines names or IP
addresses. Optionally, a port number can be added to each entry, separated from the machine by a colon. UNICORE/X
will establish connections to each of these machines and ports in a round-robin fashion to ensure that jobs can be
submitted and job statuses retrieved even if one of the TSI instances is unavailable. Should the port not be given along
with the machine, CLASSICTSI.port will be used as a default.

Here is an small example:

XNJS.filespace=$HOME/UNICORE_Jobs/
XNJS.idbfile=/opt/unicore/unicorex/conf/simpleidb

CLASSICTSI.machine=login.mycluster.com
CLASSICTSI.port=4433
CLASSICTSI.replyport=7654
CLASSICTSI.priveduser=unicore

XNJS.staging.wget=wget --no-check-certificate

Communication parameters

Some additional parameters exist for tuning the UNICORE/X-TSI communication.

Table 5.5: UNICORE/X-TSI communication settings
Property name Range of val-

ues
Default value Description

CLAS-
SICTSI.BUFFERSIZE

integer 1000000 Buffersize for filetransfers in bytes

CLASSICTSI.socket.
timeout

integer 300000 Socket timeout in milliseconds

CLASSICTSI.socket.
connect.timeout

integer 10000 Connection timeout in milliseconds

5.2. UNICORE/X 171

UNICORE Docs

Tuning the batch system settings

UNICORE uses the normal batch system commands (e.g. qstat) to get the status of running jobs. There is a special
case if a job is not listed in the qstat output. UNICORE will then assume the job is finished. However, in some cases
this is not true, and UNICORE will have a wrong job status. To work around, there is a special property

how often UNICORE/X will re-try to get the status of a job
in case the job is not listed in the status listing
CLASSICTSI.statusupdate.grace=2

If the value is larger than zero, UNICORE will re-try to get the job status.

Hint: When changing TSIs, it’s a good idea to remove the UNICORE/X state and any files before restarting. See The
UNICORE persistence layer for details.

Enabling SSL for the UNICORE/X to TSI communication

The UNICORE/X server can be set up to use SSL for communicating with the UNICORE TSI. On the UNICORE/X
side, this is very simple to switch on. In the tsi.config file, set the following property to false (by default it is set to
true):

enable SSL -
CLASSICTSI.ssl.disable=false

To setup the TSI side, please refer to the TSI manual!

Using an SSH tunnel for the UNICORE/X to TSI communication

In the special case that the callback port on the UNICORE/X server is not accessible from the TSI server, you may
want to use an SSH tunnel configuration. For example, this case occurs if the TSI is running in a different location (e.g.
an Amazon cloud) than the UNICORE/X server.

We recommend using the tool autossh, and adding the tunnel setup to to your UNICORE/X start script.

Here is an example how to do this:

killall -g autossh
autossh -M 0 -f -o "ExitOnForwardFailure=yes" -o "ServerAliveInterval 30"
-o "ServerAliveCountMax 3" -4 -N
-L 4433:localhost:4433
-R 7654:localhost:7654
-i path_to_key remoteuser@remote.server.org

172 Chapter 5. Administrator Documentation

UNICORE Docs

TSI configuration parameter reference

Here is a full list of TSI-related parameters:

Property name Type Default value /
mandatory

Description

CLAS-
SICTSI.BUFFERSIZE

integer >= 1 1048576 Buffer size (in bytes) for transferring data
from/to the TSI.

CLASSICTSI.CD string cd Unix ‘cd’ command.
CLASSICTSI.CHGRP string /bin/chgrp Unix ‘chgrp’ command.
CLASSICTSI.CHMOD string /bin/chmod Unix ‘chmod’ command.
CLASSICTSI.CP string /bin/cp Unix ‘cp’ command.
CLASSICTSI.FSID string TSI filesystem identifier which uniquely

identifies the file system. The default value
uses the ‘CLASSICTSI.machine’ property.

CLASSICTSI.GROUPS string groups Unix ‘groups’ command.
CLASSICTSI.KILL string (too complex to

show here)
Unix command template for aborting a pro-
cess and its child processes.

CLASSICTSI.LN string /bin/ln -s Unix ‘ln’ command.
CLASSICTSI.MKDIR string /bin/mkdir -p Unix directory creation command.
CLASSICTSI.MV string /bin/mv Unix ‘mv’ command.
CLASSICTSI.RM string /bin/rm Unix ‘rm’ command.
CLASSICTSI.RMDIR string /bin/rm -rf Unix directory removal command.
CLASSICTSI.UMASK string umask Unix ‘umask’ command.
CLAS-
SICTSI.interactive_execution.disable

[true, false] false Disable execution of user commands on the
TSI node.

CLASSICTSI.jobLimit integer num-
ber

-1 Limit number of running jobs (useful with
NOBATCH TSI, -1 = no limit)

CLAS-
SICTSI.limitTSIConnections

integer num-
ber

-1 Limit the total number of TSI worker pro-
cesses created by this UNICORE/X (‘-1’
means no limit).

CLASSICTSI.machine string localhost TSI host(s) or IP address(es). Spec-
ify multiple hosts in the format ‘ma-
chine1[:port1],machine2[:port2],. . . ’

CLAS-
SICTSI.pooledTSIConnections

integer >= 1 4 How many TSI worker processes per TSI
host to keep (even if idle).

CLASSICTSI.port integer >= 1 4433 TSI port to connect to.
CLASSICTSI.priveduser string unicore Account used for getting statuses of all batch

jobs (cannot be ‘root’).
CLASSICTSI.replyport integer >= 1 7654 Reply port on UNICORE/X server.
CLAS-
SICTSI.reservationAdminUser

string unicore Account used for making reservations (can-
not be ‘root’). If null, the current user’s login
will be used.

CLAS-
SICTSI.reservationEnabled

[true, false] false Whether to enable the reservation interface.

CLAS-
SICTSI.socket.connect.timeout

integer >= 0 10 Connection timeout (seconds) on when es-
tablishing (or checking) the TSI connection.
Set to ‘0’ for no timeout.

CLAS-
SICTSI.socket.no_check_matching_ips

[true, false] false Disable checking if IP address(es) of com-
mand/data socket callbacks are as expected.

continues on next page

5.2. UNICORE/X 173

UNICORE Docs

Table 5.6 – continued from previous page
Property name Type Default value /

mandatory
Description

CLAS-
SICTSI.socket.timeout

integer >= 0 180 Read timeout (seconds) on the TSI connec-
tion. Set to ‘0’ for no timeout.

CLASSICTSI.ssl.disable [true, false] true Whether to disable SSL for the TSI-
UNICORE/X connection.

CLAS-
SICTSI.statusupdate.grace

integer >= 1 2 How many times the XNJS will re-check job
status in case of a ‘lost’ job.

CLAS-
SICTSI.statusupdate.interval

integer >= 1 10000 Interval (ms) for updating job statuses on the
batch system.

5.2.1.10.2 Operation without a UNICORE TSI

In some situations (e.g. in a Windows-only environment) you will not use the UNICORE TSI, which is designed for
multi-user Unix environments. UNICORE/X can run code in an embedded mode on the UNICORE/X machine. Note
that this is without user switching, and inherently not secure as user code can access potentially sensitive information,
such as configuration data. Also, there is no separation of users.

Embedded mode is enabled in the tsi.config file by setting

coreServices.targetsystemfactory.tsiMode=embedded

The embedded mode can be configured with a set of properties which are listed in the following table:

Property name Type Default value /
mandatory

Description

XNJS.localtsi.jobLimit integer num-
ber

0 Maximum number of concurrent jobs, if set
to a value >0. Default is no limit.

XNJS.localtsi.shell string /bin/bash Default UNIX shell to use (if shell is used).
XNJS.localtsi.useShell [true, false] true Should a UNIX shell be used to execute jobs.
XNJS.localtsi.workerThreadsinteger >= 1 4 Number of worker threads used to execute

jobs.

5.2.1.11 The IDB

The UNICORE IDB (Incarnation DataBase) contains information on the target system capabilities (like number of
nodes, CPUs, etc.) and allowing to check client resource requests against these.

The second IDB function is to define abstract application definitions that are then mapped onto concrete executables.
This process (called incarnation) is performed by the XNJS component.

174 Chapter 5. Administrator Documentation

UNICORE Docs

5.2.1.11.1 Defining the IDB location

The IDB file is defined by the property XNJS.idbfile, which must point to a file or directory on the UNICORE/X
machine which is readable by the UNICORE/X process.

Using an IDB directory

While the IDB can be put into a single file, it can be convenient to use multiple files. In this case, the property XNJS.
idbfile points to a directory. The information from all files in this directory is merged.

When using a directory, you can optionally specify a main IDB file containing applications, resources, properties, etc.
From other files, only Applications will be read. A main IDB file is defined via XNJS.idbfile.main.

User-specific applications (IDB extensions)

Sometimes it is required to define special applications for (groups of) users, and even let users define their own appli-
cations. This means that the set of available applications differs between users.

User specific applications can be defined using additional properties, for example like this:

XNJS.idbfile.ext.1=/opt/staff/unicore/*.xml
XNJS.idbfile.ext.2=$HOME/.unicore/*.xml
XNJS.idbfile.ext.3=$WORK/projects/apps/*.xml

These paths are resolved on the TSI machine, NOT on UNICORE/X. As you can see, they can contain variables (using
$VARIABLE syntax WITHOUT curly braces!). Make sure that the numbering is consistent (ext.1, ext.2, . . .).

Caution: Some UNICORE features such as brokering in workflows might not (yet) work with user-specific
applications!

Examples for IDB setup

Here are a few common IDB config examples.

Single IDB file (default):

XNJS.idbfile=/etc/unicore/unicorex/simpleidb

IDB directory, all files are merged:

XNJS.idbfile=/etc/unicore/unicorex/idb/

IDB directory, main file defined, read apps from all other files:

XNJS.idbfile=/etc/unicore/unicorex/applications/
XNJS.idbfile.main=/etc/unicore/unicorex/simpleidb

IDB directory, main file defined, user-specific extension:

XNJS.idbfile=/etc/unicore/unicorex/applications/
XNJS.idbfile.main=/etc/unicore/unicorex/simpleidb
XNJS.idbfile.ext.1=$HOME/.unicore/apps/*.xml

5.2. UNICORE/X 175

UNICORE Docs

5.2.1.11.2 IDB syntax description

Ihe IDB is written in JSON format.

Note: The older XML format was deprecated in UNICORE 8 and removed in UNICORE 9.

The IDB contains Partitions, Applications, Submit/Execute script templates and Info elements, all of which will be
described below. Additionally, the administrator can customize the script template that is used to perform special
actions, such as loading modules, or changing the shell (please read Script templates for more information).

Applications can also be defined in separate files (if using a directory)

{
"Partitions" : {},

"Info" : {},

"Applications" : [],

"ExecuteScriptTemplate" : "...",

"SubmitScriptTemplate" : "...",
}

Partitions

Each Partition corresponds essentially to a batch queue. Each partition may have its own runtime limits, number of
CPUs etc.

Let’s look at an example first. In the IDB file

{
"Partitions": {

"batch" : {
"IsDefaultPartition": "true",
"Description": "Default batch queue",
"OperatingSystem": "LINUX",
"OperatingSystemVersion": "4.15.0-62-generic / Ubuntu 18.04",
"CPUArchitecture": "x86_64",
"Resources": {
"Nodes": "1-64:1",
"CPUsPerNode": "4:4",
"TotalCPUs": "4-256",
"Runtime": "1-72000:3600",

},
},

"dev" : {
"Description": "Development queue",
"OperatingSystem": "LINUX",
"CPUArchitecture": "x86_64",

(continues on next page)

176 Chapter 5. Administrator Documentation

UNICORE Docs

(continued from previous page)

"Resources": {
"Nodes": "1-4:1",
"CPUsPerNode": "4:4",
"TotalCPUs": "4-16",
"Runtime": "1-3600:10m",

},
},

}

If you have more than one Partition, make sure to set one as the default using the element

"IsDefaultPartition": "true",

Resources

Here you can specify things like number of nodes, job runtime (wall time!) CPUs per node, total number of CPUs, etc.

Integer-valued capabilities are specified with a range and an optional default, for example,

"Nodes" : "1-64:1",

or in a more verbose style:

"Nodes" : {
"Range": "1-64",
"Default": "1",

}

If a default is specified, the resource is part of the site’s default resource set, and a value will be always be sent to the
TSI.

If NO default is specified, the resource request will only be sent to the TSI if the user has requested it in her job.

A number of standard resource names exist, which a system should adhere to, in order to make user jobs as portable as
possible. You may choose to not specify some of them, if they do not make sense on your system. For example, some
sites do not allow the user to explicitely select nodes and processors per node, but only total number of CPUs, or only
Nodes.

Runtime The wall clock time (integer). You can use the usual units (“m”, “h”, “d”), e.g. “12h”

Nodes The number of nodes (integer)

CPUsPerNode The number of CPUs per node (integer)

TotalCPUs The total number of CPUs (integer)

MemoryPerNode (or just Memory) The amount of memory per node in bytes (integer). You can use the
usual units (“k”, “M”, G”), e.g. “128G”

NodeConstraints Identifiers for requesting specific node types (list of values)

QoS Quality of service required by the job (list of values)

"NodeConstraints" : {
"Type": "CHOICE",

(continues on next page)

5.2. UNICORE/X 177

UNICORE Docs

(continued from previous page)

"AllowedValues" : ["gpu", "mc"],
}

Support for array jobs

Many resource managers support submission of job arrays, i.e. multiple similar jobs are submitted at the same time,
where the user can control two things: how many jobs are submitted, and how many jobs run at the same time.

To enable this feature, the site administrator needs to define two resources in the IDB partition(s), named ArraySize
and ArrayLimit.

Consider the following example:

"ArraySize" : "1-100:1",
"ArrayLimit" : "1-100:10",

The array size and limit are passed to the TSI via

#TSI_ARRAY 0-99
#TSI_ARRAY_LIMIT 10

The TSI also sets an environment variable in the job script that corresponds to the task id, i.e. the ID of the current job
instance:

UC_ARRAY_TASK_ID = "22"; export UC_ARRAY_TASK_ID

Other types of resources

Most HPC sites have special settings that cannot be mapped to the generic resource elements shown in the previous sec-
tion. Therefore, UNICORE allows to define custom system settings and allow users to request these in their UNICORE
jobs.

Custom resources have a name, and a short specification including their type and range and/or allowed values.

UNICORE/X will send such resource requests to the TSI in upper case, with a “#TSI_SSR_” prefix, e.g.

#!/bin/sh
#TSI_SUBMIT
...
#TSI_SSR_GPUS 4
....

Custom resource definitions support the following fields:

Type int (default), double, string, choice or boolean

Range (‘int’, ‘float’) allowed range of the form “lower-upper”

Default optional default value

AllowedValues (for ‘choice’) list of strings

Description optional description

Here are a few examples:

178 Chapter 5. Administrator Documentation

UNICORE Docs

"LicenseKey" : {
"Type": "String"
}

"UserSupportClass" : {
"Type": "CHOICE",
"AllowedValues" : ["bronze", "silver", "gold"],
"Default": "bronze"
}

"ReservedBandwidth" : {
"Type": "int",
"Range" "1-100",
}

For “int” resources, you can alternatively use the abbreviated definition, as shown above for the standard resources
(such as ‘Nodes’). For example,

"FPGAs" : "0-1024"

Script templates

If you need to modify the scripts that are generated by UNICORE/X and sent to the TSI, you can achieve this using
two entries in the IDB.

{

"SubmitScriptTemplate" : ["#!/bin/sh", "#COMMAND", "#RESOURCES", "#SCRIPT"],

"ExecuteScriptTemplate" : ["#!/bin/sh", "#COMMAND" "#RESOURCES", "#SCRIPT"],

}

You can give these as an array of strings (lines), or as a single string with embedded \n line breaks.

The SubmitScriptTemplate is used for batch job submission, the ExecuteScriptTemplate is used for everything
else (e.g. creating directories, resolving user’s home, etc).

UNICORE/X generates the TSI script as follows:

• “#COMMAND” entry will be replaced by the action for the TSI, e.g. “#TSI_SUBMIT” (for submit)

• “#RESOURCES” will be replaced by the resource requirements, e.g. “#TSI_NODES=...”

• “#SCRIPT” will be the user script / the executed command

Modifying these templates can be used to perform special actions, such as loading modules, or changing the shell (but
use something compatible to ‘sh’). For example, to add some special directory to the path for user scripts submitted in
batch mode, you could use

"SubmitScriptTemplate" : [
"#!/bin/bash",
"#COMMAND",
"#RESOURCES",
"LD_LIBRARY_PATH= $LD_LIBRARY_PATH:/opt/openmpi-2.1/lib; export LD_LIBRARY_PATH",

(continues on next page)

5.2. UNICORE/X 179

UNICORE Docs

(continued from previous page)

"PATH=$PATH:/opt/openmpi-2.1/bin; export PATH",
"#SCRIPT"

],

Attention: Make sure that the commands added to the ExecuteScriptTemplate DO NOT generate any output
on standard out or standard error! Always redirect any output to /dev/null.

For example,

"ExecuteScriptTemplate" : [
"#!/bin/bash",
"#COMMAND",
"nmodule load java-11 > /dev/null 2>&1",
"#SCRIPT"]

Info

Simple key-value pairs can be entered into the IDB which are then accessible client-side. This is very useful for
conveying system-specifics to client code and also to users.

Here is an example:

{
"Info" : {
"ssh-host" : "login.cluster.com",
"admin-email" : "root@cluster.com",

},
}

These pieces of information are accessible client side as part of the target system properties.

Summary

Translation of standard resource names to TSI parameters:

Resource TSI parameter
Name of the selected partition #TSI_QUEUE
Accounting project (from job) #TSI_PROJECT
Runtime #TSI_TIME
Nodes #TSI_NODES
CPUsPerNode #TSI_PROCESSORS_PER_NODE
TotalCPUs #TSI_TOTAL_PROCESSORS
NodeConstraints #TSI_BSS_NODES_FILTER
QoS #TSI_QOS
MemoryPerNode (or Memory) #TSI_MEMORY
ArraySize #TSI_ARRAY
ArrayLimit #TSI_ARRAY_LIMIT
Other resources #TSI_SSR_<name>

180 Chapter 5. Administrator Documentation

UNICORE Docs

5.2.1.11.3 IDB Application definitions

Apart from describing the available queues and their associated resources, the most important functionality of the IDB
is defining applications.

Applications can be defined in the main IDB file

{
Applications: [
{ Name: Date, ... },
{ Name: "Python script", ... },

],
}

or in separate files (one application per file).

Here is a quick overview of the available elements, which will be documented in detail below:

Table 5.7: JSON IDB Application
Tag Type Description Optional/

mandatory
Name String Application name Mandatory
Version String Application version Mandatory
Description String Application description Optional
Executable String Executable Mandatory
Arguments List of strings Command line arguments Optional
Environment Map of strings Environment values Optional
PreCommand String Pre-processing executed on the login node Optional
PostCommand String Post-processing executed on the login node Optional
Prologue String Pre-processing in the batch script Optional
Epiloge String Post-processing in the batch script Optional
Parameters Map Metadata for application arguments / param-

eters
Optional

Resources Map Application-specific resource requests Optional
RunOnLoginNode “true”/ “false” Run job on login node Optional, de-

fault=false
IgnoreNonZeroExitCode “true”/ “false” Don’t fail the job if app exits with non-zero

exit code
Optional, de-
fault=true

Here is an example:

{
Name: "Python script",
Version: "3.4",
Description: "Python 3 interpreter",
Executable: "/usr/bin/python3",
Arguments: [

"-d$DEBUG?",
"-vVERBOSE?",
"$OPTIONS?",
"$SOURCE?",
"$ARGUMENTS",

],
(continues on next page)

5.2. UNICORE/X 181

UNICORE Docs

(continued from previous page)

Parameters: {
"SOURCE": {Type: "filename"},
"ARGUMENTS": {Type: "string"},
"DEBUG": {Type: "boolean"},
"VERBOSE": {Type: "boolean"},
"OPTIONS": {Type: "string"},

},

Prologue: "module load python3",

Resources: {
Nodes: 1,

}
}

Basic Application definition

Here is an example entry for the Date application on a UNIX system:

{
Name: Date,
Version: 1.0,
Executable: "/bin/date",

}

Invoking the Date application will be simply mapped to an invocation of /bin/date.

Arguments

Command line arguments are specified using Arguments tags:

{
Name: LS,
Version: 1.0,
Executable: /bin/ls
Arguments: ["-l", "-t",],

}

This would result in a command line /bin/ls -l -t.

182 Chapter 5. Administrator Documentation

UNICORE Docs

Conditional Arguments

The job submission from a client usually contains environment variables to be set when running the application. It
often happens that a certain argument should only be included if a corresponding environment variable is set. This
can be achieved by using conditional arguments in the incarnation definition. Conditional arguments are indicated by
a quastion mark ? appended to the argument value:

{
Name: JAVA,
Version: "11.0",
Description: "Java virtual machine",
Executable: "/usr/bin/java",

Arguments: ["-cp$CLASSPATH?",],

}

Here, -cp$CLASSPATH? is an optional argument.

If the user’s job submission now includes a environment variable named CLASSPATH the incarnated commandline will
be /usr/bin/java -cp$CLASSPATH ..., otherwise just /usr/bin/java

This allows very flexible incarnations.

Environment variables

To set environment variables, add a map

{
Name: LS,
Version: 1.0,
Executable: "/bin/ls",

Environment: {
"PATH": "/opt/myapp:/usr/bin:$PATH",
"MYENV": "value",
},

}

Pre and post-commands

Sometimes it is useful to be able to execute one or several commands before or after the execution of an application,
for example, to perform some pre- or postprocessing. These pre/post commands are executed on a login node (i.e. they
are not part of the batch job).

{
Name: SomeSimulation,
Version: "1.0",
Executable: "/usr/bin/simulation",

PreCommand: "/opt/licenses/aquire_license",

(continues on next page)

5.2. UNICORE/X 183

UNICORE Docs

(continued from previous page)

PostCommand: "/opt/licenses/release_license"
}

Prologue and epilogue

These commands will be executed as part on a batch node of the user’s job script, and are placed before/after the
application executable command.

{
Name: SomeSimulation,
Version: "1.0",
Executable: "/usr/bin/simulation",
Prologue: "module load some_module",
Epilogie: "",

}

Interactive execution when using a batch system

If an application should not be submitted to the batch system, but be run on the login node (i.e. interactively), a flag in
the IDB can be set:

{
Name: SomeApp,
Version: 1.0,

instruct UNICORE to run the application on a login node
RunOnLoginNode: true,

}

Exit code handing

By default, a UNICORE job will be set to NOT_SUCCESSFUL if the application exits with a non-zero exit code. If you
want to change this behaviour, you can set a flag

{
Name: SomeApp,
Version: 1.0,

instruct UNICORE to NOT fail if the application
exits with non-zero exit code

IgnoreNonZeroExitCode: true,

}

184 Chapter 5. Administrator Documentation

UNICORE Docs

5.2.1.11.4 Application argument metadata

For client components it can be useful to have a description of an application in terms of its arguments. This allows
clients to automatically build a nice GUI for the application.

{
Name: SomeApp,
Version: 1.0,

Parameters: {

SOURCE:{
Type: filename,
Description: "The input file",

},

VERBOSE:{
Type: boolean,
Description: "Verbose mode",

},

PRECISION:{
Type: choice,
Description: "Computational precision",
ValidValues: [

"sloppy", "normal", "pedantic",
],

},

},

}

The meaning of the attributes should be fairly obvious:

• the Description attribute contains a human-readable description of the argument.

• the Type attribute can have the values (lower/upper case does not matter) “string”, “boolean”, “int”, “double”,
“filename” or “choice”. In the case of “choice”, the ValidValues attribute is used to specify the list of valid
values. The type filename is used to specify that this is an input file for the application, allowing clients to
enable special actions for this.

• The ValidValues attribute can be used to limit the range of valid values, depending on the Type of the argument.
The processing of this attribute is client-dependent.

5.2. UNICORE/X 185

UNICORE Docs

Per-application resource requirements

If the application requires any default resources, like particular node constraints, or a specific queue, you can add
resource requests in the IDB.

For example,

{
Name: SomeSimulation,
Version: "3.0",

Resources: {
Nodes: "2",
NodeConstraints: "amd",

}
}

Note that the user job can override these, i.e. if the user requests different values for the requested resources, the values
from the user job will be used.

5.2.1.12 Data staging

When executing user jobs, UNICORE/X also performs data staging, i.e. getting data from remote locations before
starting the job, and uploading data when the job has finished. A variety of protocols can be used for data movement,
including UNICORE-specific protocols such as BFT or UFTP, but also standard protocols like ftp and scp.

Some of these have additional configuration options, which are given in this section.

5.2.1.12.1 SCP support

UNICORE supports file staging in/out using SCP with username/password authentication. The source/target URL
schema is scp://.

Site setup

At a site that wishes to support SCP, the UNICORE server needs to be configured with the path of an scp wrapper script
that can pass the password to scp, if necessary.

If not already pre-configured during installation, you can configure this path manually in the XNJS config file:

scp wrapper script
XNJS.staging.scpWrapper=/path/to/scp-wrapper.sh

186 Chapter 5. Administrator Documentation

UNICORE Docs

SCP wrapper script

A possible scp wrapper script written in TCL is provided in the extras folder of the core server bundle, for your con-
venience it is reproduced here. It requires TCL and Expect. You may need to modify the first line depending on how
Expect is installed on your system.

#!/usr/bin/expect -f

this is a wrapper around scp
#
it automates the interaction required to enter the password.
#
Prerequisites:
The TCL Expect tool is used.
#
Arguments:
1: source, 2: target, 3: password

set source [lindex $argv 0]
set target [lindex $argv 1]
set password [lindex $argv 2]
set timeout 10

start the scp process
spawn scp "$source" "$target"

handle the interaction
expect {

"passphrase" {
send "$password\r"
exp_continue
} "password:" {
send "$password\r"
exp_continue
} "yes/no)?" {
send "yes\r"
exp_continue
} timeout {
puts "Timeout."
exit

} -re "." {
exp_continue

} eof {
exit

}
}

Similar scripts may also be written in other scripting languages such as Python.

5.2. UNICORE/X 187

UNICORE Docs

5.2.1.12.2 GridFTP

UNICORE can use GridFTP client tools for stage-in/stage-out provided the client uploads the required proxy certificate.
The proxy cert is expected in a file .proxy in the job’s working directory.

GridFTP usage can be customised using two settings in tsi.config.

name / path of the executable
XNJS.staging.gridftp=/usr/local/bin/globus-url-copy

additional parameters for globus-url-copy
XNJS.staging.gridftpParameters=

5.2.1.12.3 Configuration reference

The configuration settings related to data staging are summarized in the following table:

Property name Type Default value /
mandatory

Description

XNJS.staging.addWaitingLoop[true, false] false Whether to add a waiting loop for files to ap-
pear on shared filesystems.

XNJS.staging.curl string Location of the ‘curl’ executable used for
FTP stage-ins. If null, Java code will be used
for FTP.

XNJS.staging.filesystemGraceTimeinteger >= 1 10 Grace time (in seconds) when waiting for
files to appear on shared filesystems.

XNJS.staging.gridftp string globus-url-copy Location of the ‘globus-url-copy’ executable
used for GridFTP staging.

XNJS.staging.gridftpParametersstring empty string Additional options for ‘globus-url-copy’.
XNJS.staging.scpWrapper string scp-wrapper.sh Location of the wrapper script used for scp

staging.
XNJS.staging.threads integer >= 1 4 Number of worker threads to use for data

staging.
XNJS.staging.wget string Location of the ‘wget’ executable used for

HTTP stage-ins. If null, Java code will be
used for HTTP.

XNJS.staging.wgetParametersstring Additional options for ‘wget’.

5.2.1.13 UFTP setup

UFTP is a high-performance file transfer protocol. For using UFTP as a data staging and file upload/download solution
in UNICORE, a separate server (UFTPD) is required. This is installed on a host with direct access to the file system,
usually this is a cluster login node, but it can also be a separate host.

In a UFTP transfer, one side acts as a client and the other side is the uftpd server. UNICORE/X will run the client code
via the TSI (recommended) or in-process (with lower performance).

For details on how to install the UFTPD server please refer to the separate UFTPD manual, which provides all infor-
mation required to install and configure the UFTPD.

188 Chapter 5. Administrator Documentation

https://uftp-docs.readthedocs.io/en/latest/admin-docs/uftpd/index.html
https://uftp-docs.readthedocs.io/en/latest/index.html
https://uftp-docs.readthedocs.io/en/latest/admin-docs/uftpd/manual.html

UNICORE Docs

Note: If UFTPD is not running on the same host(s) as the TSI, you will need to copy the UTFPD libs and client
executable to the TSI machine(s).

The minimal required UNICORE/X configuration consists of the listen and command addresses of the UFTPD server
and the location of the client executable on the TSI host.

Listener (pseudo-FTP) socket of UFTPD
coreServices.uftp.server.host=uftp.yoursite.edu
coreServices.uftp.server.port=64434

Command socket of UFTPD
coreServices.uftp.command.host=uftp.yoursite.edu
coreServices.uftp.command.port=64435

Full path to the 'uftp.sh' client executable
installed on the TSI node
coreServices.uftp.client.executable=/usr/share/unicore/uftpd/bin/uftp.sh

If you want to run the client code in the UNICORE/X process, set

coreServices.uftp.client.local=true

The following table shows all the available configuration options for UFTP:

5.2. UNICORE/X 189

UNICORE Docs

Property name Type Default value
/ mandatory

Description

coreSer-
vices.uftp.buffersize

integer >= 1 128 File read/write buffer size in kbytes.

coreSer-
vices.uftp.client.host

string null Client host. If not set and UFTP client is set
to local, then the local interface address will
be determined at runtime. If not set and non-
local mode is configured, then the TSI ma-
chine will be used.

coreSer-
vices.uftp.client.ip_addresses

string null Client IP address(es) to send to UFTPD. If
not set, the client.host value will be used.

coreSer-
vices.uftp.client.local

[true, false] false Controls whether, the Java UFTP client code
should be run directly within the JVM,
which will work only if the UNICORE/X has
access to the target file system, or, if set to
false, in the TSI.

coreSer-
vices.uftp.command.host

string localhost The UFTPD command host.

coreSer-
vices.uftp.command.port

integer [1 – 65535] 64435 The UFTPD command port.

coreSer-
vices.uftp.command.socketTimeout

integer [0 – 300] 10 The timeout (in seconds) for communicating
with the command port.

coreSer-
vices.uftp.command.sslDisable

[true, false] false Allows to disable SSL on the command port
(useful for testing).

coreSer-
vices.uftp.disableSessionMode

[true, false] false Controls multi-file transfers should be done
one by one (NOT recommended).

coreServices.uftp.enable [true, false] true Controls whether UFTP should be enabled
for this server.

coreSer-
vices.uftp.encryption

[true, false] false Controls whether encryption should be en-
abled by default for server-server transfers.

coreSer-
vices.uftp.rateLimit

integer number 0 Limit the bandwidth (bytes per second) used
by a single transfer (0 means no limit).

coreSer-
vices.uftp.server.host

string UFTPD listen host. If this is not set, UFTP
is disabled.

coreSer-
vices.uftp.server.port

integer [1 – 65535] 64434 UFTPD listen port.

coreServices.uftp.streams integer number 1 Requested number of parallel data streams.
coreSer-
vices.uftp.streamsLimit

integer >= 1 4 Server limit for number of streams (per
client connection).

5.2.1.13.1 Configuring multiple UFTPD servers

Since UNICORE 8.1, you can optionally configure multiple UFTPD servers that will then be used in a round-robin
fashion, to increase performance and scalability.

The configuration is similar to the simple case, but you can have multiple blocks of servers.

As an example, consider this configuration of two UFTPD servers:

coreServices.uftp.1.server.host=uftp.yoursite.edu
coreServices.uftp.1.server.port=64434
coreServices.uftp.1.command.host=uftp.yoursite.edu

(continues on next page)

190 Chapter 5. Administrator Documentation

UNICORE Docs

(continued from previous page)

coreServices.uftp.1.command.port=64435

coreServices.uftp.2.server.host=uftp-2.yoursite.edu
coreServices.uftp.2.server.port=64434
coreServices.uftp.2.command.host=uftp-2.yoursite.edu
coreServices.uftp.2.command.port=64435

Full path to the 'uftp.sh' client executable
installed on the TSI node
coreServices.uftp.client.executable=/usr/share/unicore/uftpd/bin/uftp.sh

Use consecutive numbers (1, 2, . . .) to define servers.

5.2.1.14 Configuration of storages

A UNICORE/X server can make storage systems (e.g. file systems) accessible to users in several ways:

• storages endpoints can be defined which are available even if there is no compute service;

• storages can be attached to compute services;

• each job has a working directory, which is exposed as a storage instance and can be freely accessed using a
UNICORE client;

• the StorageFactory service allows users to create dynamic storage instances, which is very useful if the UNI-
CORE workflow system is used.

Storages have additional features which are covered in other sections of this manual:

• Metadata management is covered in Metadata service

• Data-triggered processing is described in Data-triggered processing

5.2.1.14.1 Configuring storage services

Storage services are created on server startup and published in the registry. They are independent of any compute
services and accessible for all users.

Note: Service accessibility does not imply file system accessibility. The file system access control is still in place, so
users must have the appropriate Unix permissions to access a storage.

The basic property controls which storages are enabled:

coreServices.sms.storage.enabledStorages=HOME WORK SHARE2 ...

Each enabled storage is configured using a set of properties:

5.2. UNICORE/X 191

UNICORE Docs

Property name Type Default value /
mandatory

Description

coreSer-
vices.sms.storage.N.allowTrigger

[true, false] true (if creating via factory) If user is allowed to
enable the triggering feature.

coreSer-
vices.sms.storage.N.allowUserDefinedPath

[true, false] true (if creating via factory) Whether the allow
the user to set the storage base directory.

coreSer-
vices.sms.storage.N.checkExistence

[true, false] true Whether the existence of the base directory
should be checked when creating the stor-
age.

coreSer-
vices.sms.storage.N.class

Class extending
eu.unicore.uas.impl.sms.SMSBaseImpl

Storage implementation class used (and
mandatory) in case of the CUSTOM type.

coreSer-
vices.sms.storage.N.cleanup

[true, false] false Whether files of the storage should be re-
moved when the storage is destroyed. This is
mostly useful for storage factories.(runtime
updateable)

coreSer-
vices.sms.storage.N.defaultUmask

integer number 027 Default (initial) umask for files in the stor-
age. Must be an octal number.

coreSer-
vices.sms.storage.N.description

string Filesystem Description of the storage. It will be pre-
sented to the users.(runtime updateable)

coreSer-
vices.sms.storage.N.disableMetadata

[true, false] false Whether the metadata service should be dis-
abled for this storage.

coreSer-
vices.sms.storage.N.enableTrigger

[true, false] false Whether the triggering feature should be en-
abled for this storage.

coreSer-
vices.sms.storage.N.filterFiles

[true, false] false If set to true then this SMS will filter re-
turned files in response of the ListDirectory
command: only files owned or accessible by
the caller will be returned.(runtime update-
able)

coreSer-
vices.sms.storage.N.infoProviderClass

Class extending
eu.unicore.uas.impl.sms.StorageInfoProvider

eu.unicore.uas.impl.sms.DefaultStorageInfoProvider(Very) advanced setting, providing informa-
tion about storages produced by the SMS
factory.

coreSer-
vices.sms.storage.N.name

string Storage name. If not set then the internal
unique identifier is used.

coreSer-
vices.sms.storage.N.path

string Denotes the storage base path.

coreSer-
vices.sms.storage.N.protocols

string (DEPRECATED, ignored)(runtime update-
able)

coreSer-
vices.sms.storage.N.settings..*

string can have sub-
keys

Useful for CUSTOM storage types: al-
lows to set additional settings (if needed)
by such storages. Please refer to documen-
tation of a particular custom storage type
for details. Note that while in general up-
dates of the properties at runtime are prop-
agated to the chosen implementation, it is
up to it to use the updated values or ignore
changes.(runtime updateable)

coreSer-
vices.sms.storage.N.triggerUserID

string For data triggering on shared storages, use
this user ID for the controlling process.

coreSer-
vices.sms.storage.N.type

string Storage type. FIXEDPATH: mapped to a
fixed directory, VARIABLE: resolved us-
ing an environmental variable lookup, CUS-
TOM: specified class is used.

coreSer-
vices.sms.storage.N.workdir

string (DEPRECATED, use ‘path’ instead)

192 Chapter 5. Administrator Documentation

UNICORE Docs

For example, to define a storage for accessing the user’s HOME and some shared path:

coreServices.sms.storage.HOME.name=HOME
coreServices.sms.storage.HOME.type=HOME
coreServices.sms.storage.HOME.description=User's HOME

coreServices.sms.storage.WORK.name=WORK
coreServices.sms.storage.WORK.description=Shared projects workspace
coreServices.sms.storage.WORK.path=/mnt/gpfs/projects
coreServices.sms.storage.WORK.defaultUmask=07

The name parameter will be used as the storage’s service ID. This means that the URL to access these storages will be
something like

https://<site_address>/rest/core/storages/HOME

https://<site_address>/rest/core/storages/WORK

and via the SOAP/XML interfaces

https://<site_address>/services/StorageManagement?res=HOME

https://<site_address>/services/StorageManagement?res=WORK

Usually, the name property is not needed, if you set it it should match the ID to avoid confusion.

The other storage properties (see the previous section) are also accepted!

5.2.1.14.2 Configuring storages attached to TargetSystem instances

Each TargetSystem instance can have one or more storages attached to it. Note that this is different case from the shared
storages which are not attached to any particular TargetSystem. The practical difference is that to use storages attached
to a TargetSystem, a user must first create one.

By default, NO storages are created.

For example, to allows users access their home directory on the target system, you need to add a storage. This is done
using configuration entries in uas.config:

5.2. UNICORE/X 193

UNICORE Docs

Property name Type Default value /
mandatory

Description

coreSer-
vices.targetsystem.storage.N.allowTrigger

[true, false] true (if creating via factory) If user is allowed to
enable the triggering feature.

coreSer-
vices.targetsystem.storage.N.allowUserDefinedPath

[true, false] true (if creating via factory) Whether the allow
the user to set the storage base directory.

coreSer-
vices.targetsystem.storage.N.checkExistence

[true, false] true Whether the existence of the base directory
should be checked when creating the stor-
age.

coreSer-
vices.targetsystem.storage.N.class

Class extending
eu.unicore.uas.impl.sms.SMSBaseImpl

Storage implementation class used (and
mandatory) in case of the CUSTOM type.

coreSer-
vices.targetsystem.storage.N.cleanup

[true, false] false Whether files of the storage should be re-
moved when the storage is destroyed. This is
mostly useful for storage factories.(runtime
updateable)

coreSer-
vices.targetsystem.storage.N.defaultUmask

integer number 027 Default (initial) umask for files in the stor-
age. Must be an octal number.

coreSer-
vices.targetsystem.storage.N.description

string Filesystem Description of the storage. It will be pre-
sented to the users.(runtime updateable)

coreSer-
vices.targetsystem.storage.N.disableMetadata

[true, false] false Whether the metadata service should be dis-
abled for this storage.

coreSer-
vices.targetsystem.storage.N.enableTrigger

[true, false] false Whether the triggering feature should be en-
abled for this storage.

coreSer-
vices.targetsystem.storage.N.filterFiles

[true, false] false If set to true then this SMS will filter re-
turned files in response of the ListDirectory
command: only files owned or accessible by
the caller will be returned.(runtime update-
able)

coreSer-
vices.targetsystem.storage.N.infoProviderClass

Class extending
eu.unicore.uas.impl.sms.StorageInfoProvider

eu.unicore.uas.impl.sms.DefaultStorageInfoProvider(Very) advanced setting, providing informa-
tion about storages produced by the SMS
factory.

coreSer-
vices.targetsystem.storage.N.name

string Storage name. If not set then the internal
unique identifier is used.

coreSer-
vices.targetsystem.storage.N.path

string Denotes the storage base path.

coreSer-
vices.targetsystem.storage.N.protocols

string (DEPRECATED, ignored)(runtime update-
able)

coreSer-
vices.targetsystem.storage.N.settings..*

string can have sub-
keys

Useful for CUSTOM storage types: al-
lows to set additional settings (if needed)
by such storages. Please refer to documen-
tation of a particular custom storage type
for details. Note that while in general up-
dates of the properties at runtime are prop-
agated to the chosen implementation, it is
up to it to use the updated values or ignore
changes.(runtime updateable)

coreSer-
vices.targetsystem.storage.N.triggerUserID

string For data triggering on shared storages, use
this user ID for the controlling process.

coreSer-
vices.targetsystem.storage.N.type

string Storage type. FIXEDPATH: mapped to a
fixed directory, VARIABLE: resolved us-
ing an environmental variable lookup, CUS-
TOM: specified class is used.

coreSer-
vices.targetsystem.storage.N.workdir

string (DEPRECATED, use ‘path’ instead)

194 Chapter 5. Administrator Documentation

UNICORE Docs

Here, N stands for an identifier (e.g. 1, 2, 3, . . .) to distinguish the storages. For example, to configure three storages
(Home, one named TEMP pointing to /tmp and the other named DEISA_HOME pointing to $DEISA_HOME) you
would add the following configuration entries in uas.config:

coreServices.targetsystem.storage.0.name=Home
coreServices.targetsystem.storage.0.type=HOME

coreServices.targetsystem.storage.1.name=TEMP
coreServices.targetsystem.storage.1.type=FIXEDPATH
coreServices.targetsystem.storage.1.path=/tmp

coreServices.targetsystem.storage.2.name=DEISA_HOME
coreServices.targetsystem.storage.2.type=VARIABLE
coreServices.targetsystem.storage.2.path=$DEISA_HOMES

example for a custom SMS implementation
coreServices.targetsystem.storage.3.name=MyStorage
coreServices.targetsystem.storage.3.type=CUSTOM
coreServices.targetsystem.storage.3.path=/
coreServices.targetsystem.storage.3.class=my.custom.sms.ImplementationClass

Controlling target system’s storage resources

By default storage resource names (used in storage address) are formed from the owning user’s xlogin and the storage
type name, e.g. someuser-Home. This is quite useful as users can write a URL of the storage without prior searching
for its address. However, if the site’s user mapping configuration maps more than one grid certificate to the same
xlogin, then this solution is not acceptable: only the first user connecting would be able to access her/his storage. This
is because resource owners are expressed as grid user names (certificate DNs) and not xlogins. To have unique, but
dynamically created and non user friendly names of storages (and solve the problem of non-unique DN mappings) set
this option in uas.config:

coreServices.targetsystem.uniqueStorageIds=true

5.2.1.14.3 Configuring the StorageFactory service

The StorageFactory service allows clients to dynamically create storage instances. These can have different types, for
example, you could have storages on a normal filesystem and other storages on an S3 cluster.

The basic property controls which storage types are supported:

coreServices.sms.enabledFactories=TYPE1 TYPE2 ...

Each supported storage type is configured using a set of properties:

5.2. UNICORE/X 195

UNICORE Docs

Property name Type Default value /
mandatory

Description

coreSer-
vices.sms.factory.N.allowTrigger

[true, false] true (if creating via factory) If user is allowed to
enable the triggering feature.

coreSer-
vices.sms.factory.N.allowUserDefinedPath

[true, false] true (if creating via factory) Whether the allow
the user to set the storage base directory.

coreSer-
vices.sms.factory.N.checkExistence

[true, false] true Whether the existence of the base directory
should be checked when creating the stor-
age.

coreSer-
vices.sms.factory.N.class

Class extending
eu.unicore.uas.impl.sms.SMSBaseImpl

Storage implementation class used (and
mandatory) in case of the CUSTOM type.

coreSer-
vices.sms.factory.N.cleanup

[true, false] false Whether files of the storage should be re-
moved when the storage is destroyed. This is
mostly useful for storage factories.(runtime
updateable)

coreSer-
vices.sms.factory.N.defaultUmask

integer number 027 Default (initial) umask for files in the stor-
age. Must be an octal number.

coreSer-
vices.sms.factory.N.description

string Filesystem Description of the storage. It will be pre-
sented to the users.(runtime updateable)

coreSer-
vices.sms.factory.N.disableMetadata

[true, false] false Whether the metadata service should be dis-
abled for this storage.

coreSer-
vices.sms.factory.N.enableTrigger

[true, false] false Whether the triggering feature should be en-
abled for this storage.

coreSer-
vices.sms.factory.N.filterFiles

[true, false] false If set to true then this SMS will filter re-
turned files in response of the ListDirectory
command: only files owned or accessible by
the caller will be returned.(runtime update-
able)

coreSer-
vices.sms.factory.N.infoProviderClass

Class extending
eu.unicore.uas.impl.sms.StorageInfoProvider

eu.unicore.uas.impl.sms.DefaultStorageInfoProvider(Very) advanced setting, providing informa-
tion about storages produced by the SMS
factory.

coreSer-
vices.sms.factory.N.name

string Storage name. If not set then the internal
unique identifier is used.

coreSer-
vices.sms.factory.N.path

string Denotes the storage base path.

coreSer-
vices.sms.factory.N.protocols

string (DEPRECATED, ignored)(runtime update-
able)

coreSer-
vices.sms.factory.N.settings..*

string can have sub-
keys

Useful for CUSTOM storage types: al-
lows to set additional settings (if needed)
by such storages. Please refer to documen-
tation of a particular custom storage type
for details. Note that while in general up-
dates of the properties at runtime are prop-
agated to the chosen implementation, it is
up to it to use the updated values or ignore
changes.(runtime updateable)

coreSer-
vices.sms.factory.N.triggerUserID

string For data triggering on shared storages, use
this user ID for the controlling process.

coreSer-
vices.sms.factory.N.type

string Storage type. FIXEDPATH: mapped to a
fixed directory, VARIABLE: resolved us-
ing an environmental variable lookup, CUS-
TOM: specified class is used.

coreSer-
vices.sms.factory.N.workdir

string (DEPRECATED, use ‘path’ instead)

196 Chapter 5. Administrator Documentation

UNICORE Docs

For example,

coreServices.sms.factory.TYPE1.description=GPFS file system
coreServices.sms.factory.TYPE1.fixedpath=GPFS file system
coreServices.sms.factory.TYPE1.path=/mnt/gpfs/unicore/unicorex-1/storage-factory

if this is set to true, the directory corresponding to a storage instance will
be deleted when the instance is destroyed. Defaults to "true"
coreServices.sms.factory.TYPE1.cleanup=true

allow the user to pass in a path on storage creation. Defaults to "true"
coreServices.sms.factory.TYPE1.allowUserDefinedPath=true

The path parameter determines the base directory used for the storage instances (i.e. on the backend), and the unique
ID of the storage will be appended automatically.

The cleanup parameter controls whether the storage directory will be deleted when the storage is destroyed.

It is also possible to let the user control the path of the dynamic storage, by sending a path parameter when creating
the storage. For example, the user can use UCC to create a storage:

$ ucc create-sms path=/opt/projects/shared-data

This will create a storage resource for accessing the given directory. In this case, there will be no cleanup, and no
appended storage ID.

The normal storage properties (see the previous section) are also accepted: type, class, filterFiles, etc.

If you have a custom storage type, an additional class parameter defines the Java class name to use (as in normal SMS
case). For example,

coreServices.sms.factory.TYPE1.type=CUSTOM
coreServices.sms.factory.TYPE1.class=de.fzj.unicore.uas.jclouds.s3.S3StorageImpl

5.2.1.14.4 Configuring the job working directory storage services

For each UNICORE job instance, a storage instance is created, corresponding to the job’s working directory. In some
cases you might wish to control this storage in detail, e.g. configure a special storage backend.

The working directory storages are configured using a set of properties, which is the same as for the other storage types,
except for the prefix.

Note: The path, name, description, enableTrigger and disableMetadata properties are ignored, they are set
by the server.

For example,

coreServices.sms.jobDirectories.type=CUSTOM
coreServices.sms.jobDirectories.class=your.custom.SMSImpl

5.2. UNICORE/X 197

UNICORE Docs

5.2.1.15 The UNICORE metadata service

UNICORE supports metadata management on a per-storage basis. This means, each storage instance (for example, the
user’s home, or a job working directory) has its own metadata management service instance.

Metadata management is separated into two parts: a front end (which is a web service) and a back end.

The front end service allows the user to manipulate and query metadata, as well as manually trigger the metadata
extraction process. The back end is the actual implementation of the metadata management, which is pluggable and
can be exchanged by custom implementations. The default implementation has the following properties:

• Apache Lucene for indexing

• Apache Tika for extracting metadata

• metadata is stored as files directly on the storage resource, in files with a special .metadata suffix

• the index files are stored on the UNICORE/X server, in a configurable directory

5.2.1.15.1 Configuring metadata support

By default, metadata support is enabled on all storages (except job directories).

You can disable it on a per-storage basis, see Configuration of storages for the relevant config settings.

You can also control which implementation should be used. This is done in <CONF>/uas.config.

#
Metadata manager settings
#

coreServices.metadata.managerClass=eu.unicore.uas.metadata.LuceneMetadataManager

#
use Tika for extracting metadata
(if you do not want this, remove this property)
#
coreServices.metadata.parserClass=org.apache.tika.parser.AutoDetectParser

#
Lucene index directory:
#
Configure a directory on the UNICORE/X machine where index
files should be placed
#
coreServices.metadata.luceneDirectory=/tmp/data/luceneIndexFiles/

198 Chapter 5. Administrator Documentation

UNICORE Docs

5.2.1.15.2 Controlling metadata extraction

If a file named .unicore_metadata_control is found in the base directory (i.e. where the crawler starts its crawling
process), it is evaluated to decide which files should be included or excluded in the metadata extraction process.

By default, all files are included in the extraction process, except those matching a fixed set of patterns (.svn, and the
UNICORE metadata and control files themselves).

The file format is a standard key=value properties file. Currently, the following keys are understood:

• exclude a comma-separated list of string patterns of filenames to exclude

• include a comma-separated list of string patterns of filenames to include

• useDefaultExcludes if set to false, the predefined exclude list will NOT be used

The include/exclude patterns may include wildcards ? and *.

Examples

To only include pdf and jpg files, you would use

include=*.pdf,*.jpg

To exclude all doc and ppt files,

exclude=*.doc,*.ppt

To include all pdf files except those whose name starts with 2011,

include=*.pdf
exclude=2011*.pdf

5.2.1.16 Data-triggered processing

UNICORE can be set up to automatically scan storages and trigger processing steps (e.g. submit batch jobs or run
processing tasks) according to user-defined rules.

By default, data-triggered processing is disabled on all storages.

Explicit control is available via the configuration properties for storages, as listed in Configuration of storages. Set the
enableTrigger property to true to enable the data-triggered processing for the given storage.

Since shared storages (HOME, ROOT, etc) are owned by the UNICORE server and used by multiple users, data-
triggered processing requires a valid Unix user ID in order to list files independently of any actual user. Therefore the
triggerUserID property is used to configure which user ID should be used (as always in UNICORE, this cannot be
root, and multiuser operation requires the TSI!).

For example, you might have a project storage configured like this:

#
Shares
#
coreServices.sms.storage.enabledStorages=PROJECTS

coreServices.sms.storage.PROJECTS.name=projects
(continues on next page)

5.2. UNICORE/X 199

UNICORE Docs

(continued from previous page)

coreServices.sms.storage.PROJECTS.description=Shared projects
coreServices.sms.storage.PROJECTS.path=/opt/shared-data
coreServices.sms.storage.PROJECTS.defaultUmask=007
coreServices.sms.storage.PROJECTS.enableTrigger=true
coreServices.sms.storage.PROJECTS.triggerUserID=projects01

Here the scanning settings are only evaluated top-level.

For each included directory, a separate scan is done, controlled by another .UNICORE_Rules file in that directory. So
the directory structure could look like this:

dir1
...
.UNICORE_Rules

dir2
...
.UNICORE_Rules

dir3
...
.UNICORE_Rules

.UNICORE_Rules

The top-level .UNICORE_Rules file must list the included directories. Processing the included directories is then done
using the owner of that directory.

5.2.1.17 Authorization back-end (PDP) guide

The authorization process in UNICORE/X requires that nearly all operations must be authorized prior to execution
(exceptions may be safely ignored).

UNICORE allows to choose which authorization back-end is used. The module which is responsible for this operation
is called Policy Decision Point (PDP). You can choose one among already available PDP modules or even develop
your own engine.

Local PDPs use a set of policy files to reach an authorisation decision, remote PDPs query a remote service.

Local UNICORE PDPs use the XACML language to express the authorization policy. The XACML policy language
is introduced in the Guide to XACML security policies. You can also review this guide if you want to have a deeper
understanding of the authorization process.

5.2.1.17.1 Basic configuration

Note: The full list of options related to PDP is available here.

There are three options which are relevant to all PDPs:

• container.security.accesscontrol (values: true or false) This boolean property can be used to com-
pletely turn off the authorization. This guide makes sense only if this option is set to true. Except for test
scenarios this should never be switched off, otherwise every user can in principle access all resources on the
server.

200 Chapter 5. Administrator Documentation

UNICORE Docs

• container.security.accesscontrol.pdp (value: full class name) This property is used to choose which
PDP module is being used.

• container.security.accesscontrol.pdpConfig (value: file path) This property provides a location of a
configuration file of the selected PDP.

5.2.1.17.2 Available PDP modules

XACML 2.0 PDP

The implementation class of this module is: eu.unicore.uas.pdp.local.LocalHerasafPDP so to enable this
module use the following configuration in uas.config:

container.security.accesscontrol.pdpConfig=<CONFIG_DIR>/xacml2.conf
container.security.accesscontrol.pdp=eu.unicore.uas.pdp.local.LocalHerasafPDP

The configuration file content is very simplistic as it is enough to define only few options:

The directory where XACML 2.0 policy files are stored
localpdp.directory=conf/xacml2Policies

Wildcard expression to select actual policy files from the directory defined above
localpdp.filesWildcard=*.xml

Combining algorithm for the policies. You can use the full XACML id or its last part.
localpdp.combiningAlg=first-applicable

The policies from the localpdp.directory are always evaluated in alphabetical order, so it is good to name files
with a number. By default, the first-applicable combining algorithm is used and UNICORE policy is stored in two
files: 01coreServices.xml and 99finalDeny.xml. The first file contains the default access policy, the latter a
single fall through deny rule. Therefore, you can put your own policies using an additional file in file named e.g.
50localRules.xml.

The policies are reloaded whenever you change (or touch) the configuration file of this PDP, e.g. like this:

$ touch conf/xacml2.conf

Remote SAML/XACML 2.0 PDP with Argus PAP

This PDP allows for mixing local policies with policies downloaded from a remote server using SAML protocol for
XACML policy query. This protocol is implemented by Argus PAP server. Please note that under the name Argus
there is a whole portfolio of services, but for purpose of UNICORE integration Argus PAP is the only one required.

Usage of Argus PAP together with UNICORE policies is useful as Argus PAP allows for a quite easy editing of au-
thorization policies with its Simplified Policy Language. It is less powerful then XACML but allows for performing
all the typical tasks like banning selected users or VOs. Also, if Argus is used to provide authorization rules for other
middleware installed at the site (as gLite or ARC), it might be desirable to have a single place to store site-wide policies.

Unfortunately, as Argus policy can not fully take over the UNICORE authorization (see the above note for details), the
Argus policy must be combined with the classic UNICORE XACML 2 policy, stored locally.

The implementation class of this module is eu.unicore.uas.pdp.argus.ArgusPDP, so to enable this module use
the following configuration in uas.config:

5.2. UNICORE/X 201

https://argus-documentation.readthedocs.io/en/stable

UNICORE Docs

container.security.accesscontrol.pdpConfig=<CONFIG_DIR>/argus.config
container.security.accesscontrol.pdp=eu.unicore.uas.pdp.argus.ArgusPAP

The PDP configuration is very simple as it is only required to provide the Argus endpoint and query timeout (in mil-
liseconds).

The directory where XACML 2.0 policy files are stored
(both local and downloaded from Argus PAP)
localpdp.directory=conf/xacml2PoliciesWithArgus

Wildcard expression to select actual policy files from the directory defined above
localpdp.filesWildcard=*.xml

Combining algorithm for the policies. You can use the full XACML id or its last part.
This algorithm will be used to combine the Argus and local policies.
localpdp.combiningAlg=first-applicable

Address of the Argus PAP server. Typically only the hostname needs to be changed,
rarely the port.
argus.pap.serverAddress=https://localhost:8150/pap/services/ProvisioningService

What is the name of a file to which a downloaded Argus policy is saved.
Note that name of this file is very important as it determines policies evaluation␣
→˓order.
Here the Argus policy will be evaluated first.
argus.pap.policysetFilename=00argus.xml

How often (in ms) the Argus PAP should be queried for a new policy
argus.pap.queryInterval=3600000

What is the Argus query timeout in ms.
argus.pap.queryTimeout=15000

If Argus PAP is unavailable for that long (in ms) the PDP will black all users
assuming that the policy is outdated. Use negative value to disable this feature.
argus.pap.deny.timeout=36000000

You can use both http and https addresses. In the latter case server’s certificate is used to make the connection. Note
that all localpdp.* settings are the same as in case of the default, local XACML 2.0 PDP.

Using the available configuration options, it is possible to merge Argus policies in many different ways. Here we present
a simple pattern, which is good for cases when Argus is used to ban users (it was also applied to the example above):

• Argus policy should be saved to a file which will be evaluated first, e.g. 00argus.xml.

• Default XACML 2.0 policies of UNICORE local PDP should be added to the directory, without any changes.

• The policy combining algorithm should be first-applicable.

• Argus PAP policies should include a series of deny statements (see Argus documentation for details) and no final
permit (or deny) fall-trough rule.

Then Argus policy will be evaluated first. If any banning rule matches the user then it will be denied by the Argus
policy. Otherwise it will be non-applicable and the local, default UNICORE policy will be evaluated. Note that if it
is problematic for other (non-UNICORE) services using Argus, to remove the final fall-through permit or deny rule,
then you can add such rule, but with a proper resource statement so it will be applicable only for non-UNICORE
components.

202 Chapter 5. Administrator Documentation

https://argus-documentation.readthedocs.io/en/stable

UNICORE Docs

Of course, it is also possible to creatively design other patterns, when for instance Argus policy is evaluated as a second
one.

5.2.1.18 Guide to XACML security policies

XACML authorization policies need not to be modified on a day-to-day basis when running the UNICORE server. The
most common tasks as banning or allowing users can be performed very easily using UNICORE Attribute Sources like
XUUDB or Unity. This guide is intended for advanced administrators who want to change the non-standard authoriza-
tion process and for developers who want to provide authorization policies for services they create.

The XACML standard is a powerful way to express fine grained access control. The idea is to have XML policies
describing how and by whom actions on resources can be performed. A very readable introduction into XACML can
be found with Sun’s XACML implementation.

There are several versions of XACML policy language. Currently, UNICORE uses version 2.0.

UNICORE allows to choose one of several authorization back-end implementations called Policy Decision Points
(PDP). The Authorization back-end (PDP) guide shows how to choose and configure each of the available PDPs.

In UNICORE terms XACML is used as follows. Before each operation (i.e. execution of a web service call), an
XACML request is generated, which currently includes the following attributes:

XACML attribute name XACML cat-
egory

XACML type Description

urn:oasis:names:tc:xacml:1.0:
resource:resource-id

Resource AnyURI WS service name

urn:unicore:wsresource Resource String Identifier of the WSRF resource in-
stance (if any).

owner Resource X.500 name The name of the VO resource owner.
voMembership-VONAME Resource String For each VO the accessed resource is

a member, there is such attribute with
the VONAME set to the VO, and with
the value specifying allowed access
type, using the same action categories
as are used for the actionType attribute.

actionType Action String Action type or category. Currently
read for read-only operation and mod-
ify for others.

urn:oasis:names:tc:xacml:1.0:
action:action-id

Action String WS operation name.

urn:oasis:names:tc:xacml:1.0:
subject:subject-id

Subject X.500 name User’s DN.

role Subject String The user’s role.
consignor Subject X.500 name Client’s (consignor’s) DN.
vo Subject Strings Bag with all VOs the user is member

of (if any).
selectedVo Subject String The effective, selected VO (if any).

Note that the above list is valid for the default local XACML 2 PDP. For others the attributes might be different (see
the respective documentation).

The request is processed by the server and checked against a (set of) policies. Policies contain rules that can either deny
or permit a request, using a powerful set of functions.

5.2. UNICORE/X 203

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://unity-idm.eu/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://sunxacml.sourceforge.net/guide.html#xacml

UNICORE Docs

5.2.1.18.1 Policy sets and combining of results

Typically, the authorization policy is stored in one file. However as this file can get long and unmanageable some-
times it is better to split it into several ones. This additionally allows to easily plug additional policies to the existing
authorization process. In UNICORE, this feature is implemented in the XAML 2.0 PDP.

When policies are split in multiple files each of those files must contain (at least one) a separate policy. A PDP must
somehow combine result of evaluation of multiple policies. This is done by so-called policy combining algorithm. The
following algorithms are available, the part after last colon describes behaviour of each:

urn:oasis:names:tc:xacml:1.1:policy-combining-algorithm:ordered-permit-overrides
urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:permit-overrides
urn:oasis:names:tc:xacml:1.1:policy-combining-algorithm:ordered-deny-overrides
urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:deny-overrides
urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-applicable
urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:only-one-applicable

Each policy file can contain one or more rules, so it is important to understand how possible conflicts are resolved. The
so-called combining algorithm for the rules in a single policy file is specified in the top-level Policy element.

The XACML specification defines six algorithms: permit-overrides, deny-overrides, first-applicable,
only-one-applicable, ordered-permit-overrides and ordered-deny-overrides. For example, to specify
that the first matching rule in the policy file is used to make the decision, the Policy element must contain the following
RuleCombiningAlgId attribute:

<Policy xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
PolicyId="ExamplePolicy"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:first-

→˓applicable">

The full identifiers of the combining algorithms are as follows:

urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides
urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-overrides
urn:oasis:names:tc:xacml:1.1:rule-combining-algorithm:ordered-deny-overrides
urn:oasis:names:tc:xacml:1.1:rule-combining-algorithm:ordered-permit-overrides
urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:first-applicable

5.2.1.18.2 Role-based access to services

A common use case is to allow/permit access to a certain service based on a user’s role This can be achieved with the
following XACML rule, which describes that a user with role admin is given access to all services.

<Rule RuleId="Permit:Admin" Effect="Permit">
<Description> Role "admin" may do anything. </Description>
<Target />
<Condition>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-
→˓only">

<SubjectAttributeDesignator
DataType="http://www.w3.org/2001/XMLSchema#string" AttributeId=

→˓"role" />
(continues on next page)

204 Chapter 5. Administrator Documentation

UNICORE Docs

(continued from previous page)

</Apply>
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">admin

→˓</AttributeValue>
</Apply>

</Condition>
</Rule>

If the access should be limited to a certain service, the Target element must contain a service identifier, as follows. In
this example, access to the DataService is granted to those who have the data-access role.

<Rule RuleId="rule2" Effect="Permit">
<Description>Allow users with role "data-access" access to the DataService</

→˓Description>
<Target>
<Resources>

<Resource>
<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-

→˓equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#anyURI

→˓">DataService</AttributeValue>
<ResourceAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.

→˓0:resource:resource-id"
DataType="http://www.w3.org/

→˓2001/XMLSchema#anyURI" MustBePresent="true" />
</ResourceMatch>

</Resource>
</Resources>

</Target>

<Condition>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-
→˓only">

<SubjectAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema
→˓#string" AttributeId="role" />

</Apply>
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">data-access

→˓</AttributeValue>
</Apply>

</Condition>

By using the <Action> tag in policies, web service access can be controlled on the method level. In principle, XACML
supports even control based on the content of some XML document, such as the incoming SOAP request. However,
this is not yet used in UNICORE/X.

5.2. UNICORE/X 205

UNICORE Docs

5.2.1.18.3 Limiting access to services to the service instance owner

Most service instances (corresponding e.g. to jobs or files) should only ever be accessed by their owner. This rule is
expressed as follows:

<Rule RuleId="Permit:AnyResource_for_its_owner" Effect="Permit">
<Description> Access to any resource is granted for its owner </Description>
<Target />
<Condition>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:x500Name-equal">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:x500Name-one-
→˓and-only">

<SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.
→˓0:subject:subject-id"

DataType="urn:oasis:names:tc:xacml:1.0:data-
→˓type:x500Name"

MustBePresent="true" />
</Apply>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:x500Name-one-
→˓and-only">

<ResourceAttributeDesignator
AttributeId="owner" DataType="urn:oasis:names:tc:xacml:1.0:data-

→˓type:x500Name"
MustBePresent="true" />
</Apply>

</Apply>
</Condition>

</Rule>

5.2.1.18.4 More details on XACML use in UNICORE/X

To get more detailed information about XACML policies (e.g. to get the list of all available functions etc) please read
the XACML specification. To get more information on XACML used in UNICORE/X it is good to set the logging level
of security messages to DEBUG:

logger.sec.name=unicore.security
logger.sec.level=DEBUG

You will be able to read what input is given to the XACML engine and what is the detailed answer. Alternatively, ask
on the support mailing list.

5.2.2 UNICORE/X Update

As a first step and precaution, you should make backups of your existing config files and put them in a safe place.

In the following, LIB refers to the directory containing the jar files for the component, and CONF to the config directory
of the existing installation.

• It is assumed that you have unpacked the tar.gz file somewhere, e.g. to /tmp/. In the following, this location
will be denoted as “$NEW”:

206 Chapter 5. Administrator Documentation

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
mailto:unicore-support@lists.sf.net

UNICORE Docs

$ export NEW=/tmp/unicore-servers-9.0.0

• Stop the server. If not yet done, make a backup of the config files.

• Update the jar files:

$ rm -rf LIB/*
$ cp $NEW/lib/*.jar LIB

• Start the server.

• Check the logs for any ERROR or WARN messages and if necessary correct them.

5.3 TSI

The UNICORE Target System Interface (TSI) is used by the UNICORE/X server to perform tasks on the target re-
source, such as submitting and monitoring jobs, handling data, managing directories etc. It is a daemon running on the
frontend(s) of the target resource (e.g. a cluster login node) which provides a remote interface to the operating system,
the batch system and the file system of the target resource.

The TSI must be started by root on the cluster login node(s), and will run with elevated privileges. It requires an
open port (default: 4433) where it receives connections from the UNICORE/X server(s). The TSI will make outgoing
connections (callbacks) to the UNICORE/X server(s). Please set up your firewall(s) accordingly. Operation through
an SSH tunnel is possible as well, see the TSI Manual for details.

Fig. 5.6: UNICORE TSI

TSI Manual TSI Manual with detailed instructions and examples for using the TSI.

TSI API The API to the TSI as used by UNICORE/X.

Building the TSI Building TSI distribution packages.

5.3. TSI 207

UNICORE Docs

5.3.1 TSI Manual

The TSI performs the work on behalf of UNICORE users and so must be able to execute processes under different
uids and gids. Therefore, in production it must be run with sufficient privileges to allow this (during development and
testing it can be run as a normal user).

You can configure the TSI and UNICORE/X to communicate via SSL. In this case, you need a server certificate for the
TSI. For details, see section Enabling SSL for the UNICORE/X - TSI communication.

The TSI is one point where UNICORE’s seamless model meets local variations and so will usually need to be adapted
to the target system. This is described in section Adapting the TSI to your system.

Note: In production environments, the TSI will run with elevated privileges. Make sure to read and understand section
Securing and hardening the system on security and hardening the system.

5.3.1.1 Prerequisites

The TSI requires Python Version 3.6 or later. It works only on Unix-style operating systems (e.g. Linux or Mac OS/X),
Windows is not directly supported.

The TSI uses the setpriv tool to run as a non-root user (unicore) with the capability to switch uid/gid to the requested
values, in order to perform tasks on behalf of the requesting user. If this is not available on the system, the TSI will run
as root (but never perform any actions as root).

Batch system status checks (e.g. via squeue for Slurm) will be executed under a system account (usually unicore)
which is configured in the UNICORE/X server configuration. Note that this system account cannot be root, as the TSI
will never execute anything as root.

The system account MUST be able to list batch job status from all users! If necessary, configure your batch system
accordingly. For details on this procedure we refer to the documentation of your batch system.

If you want to run user scripts in the proper user slice, you can enable PAM, which requires an appropriate PAM module
file, by default this is called unicore-tsi.

5.3.1.2 Installation

The TSI is available either as a generic distribution (part of the UNICORE core server bundle package, or as a separate
tgz archive) or as a batch system specific package (such as an RPM, deb or tgz for Torque or Slurm) on the UNICORE
repositories at sourceforge.

5.3.1.2.1 Batch system specific distribution

Use the installation tools of your operating system to install the package. The following table shows the location of the
TSI files.

Name in this manual Location Description
CONF /etc/unicore/tsi Configuration files
BIN /usr/share/unicore/tsi/bin Start/stop scripts
LIB /usr/share/unicore/tsi/lib Python files
LOGS /var/run/unicore/tsi/logs Log files

208 Chapter 5. Administrator Documentation

https://sourceforge.net/projects/unicore/files/Servers/Core/
https://sourceforge.net/p/unicore/wiki/Linux_Repositories/
https://sourceforge.net/p/unicore/wiki/Linux_Repositories/

UNICORE Docs

5.3.1.2.2 Generic distribution

The generic TSI distribution contains several TSI variations for many popular batch systems.

Before being able to use the TSI, you must install one of the TSI variants and configure it for your local environment:

• Execute the installation script Install.sh and follow the instructions to copy all required files into a new TSI
installation directory.

• Adapt the configuration as described below.

In the following, TSI_INSTALL refers to the directory where you installed the TSI. This has the following sub-
directories:

Name in this manual Location Description
TSI_INSTALL Base directory chosen during execution of Install.sh
CONF TSI_INSTALL/conf Configuration files
BIN TSI_INSTALL/bin Start/stop scripts
LIB TSI_INSTALL/lib Python files
LOGS TSI_INSTALL/logs Log files

5.3.1.2.3 File permissions

The permissions on the TSI files should be set to read only for the owner. The default installation procedure will
initially take care of this. As the TSI is executed with elevated privileges, you should never leave any TSI files (or
directories) writable after any update.

5.3.1.3 Configuring the TSI

The TSI is configured by editing the CONF/tsi.properties and CONF/startup.properties files. Please review
these two files carefully.

Changes outside the config files should not be necessary, except for new portings and any local adaptations, as detailed
in the next section. If changes are made, they should be passed on to the UNICORE developers, so that they can be
incorporated into future releases of the scripts. To do that, send mail to unicore-support or use the issue tracker at
sourceforge.

5.3.1.3.1 Verifying

Before starting the TSI, you should make sure that the batch system integration is working correctly. See the section
on Adapting the TSI to your system below!

5.3. TSI 209

mailto:unicore-support@lists.sf.net
https://sourceforge.net/p/unicore/issues

UNICORE Docs

5.3.1.3.2 TSI networking configuration

In tsi.properties, the TSI host interface and port are defined, as well as the allowed UNICORE/X host(s).

TSI host interface, use "0.0.0.0" to bind to all interfaces
tsi.my_addr=localhost

The port on which the TSI will listen for UNICORE/X requests
tsi.my_port=14433

Comma-separated list of UNICORE/X machine(s) from where
connections are allowed
tsi.unicorex_machine=my-unicorex-a.server.org, my-unicorex-b.server.org

Optionally, define a fixed callback port to UNICORE/X
(If not set, the TSI will use the port requested by UNICORE/X)
tsi.unicorex_port=7654

NOTE: if using SSL (see section Enabling SSL for the UNICORE/X - TSI communication), the tsi.
unicorex_machine is ignored.

You can optionally configure a range of local ports for the TSI to use. If this is set, the TSI will use free ports from
that range only. Per UNICORE/X connection, two local ports are required, so make sure to not set this range too small
(should be at least 20 ports).

tsi.local_portrange=50000:50100

5.3.1.3.3 UNICORE/X configuration

UNICORE/X configuration is described fully in the relevant UNICORE/X manual. Here we just give the most important
steps to get the TSI up and running.

The relevant UNICORE/X config file is usually called tsi.config.

Hostnames and ports

UNICORE/X needs to know the TSI hostname and port:

CLASSICTSI.machine=frontend.mycluster.org
CLASSICTSI.port=4433

SSL support

If you wish to setup SSL for the UNICORE/X-to-TSI communication, please refer to section Enabling SSL for the
UNICORE/X - TSI communication.

210 Chapter 5. Administrator Documentation

UNICORE Docs

5.3.1.3.4 ACL support

The TSI (together with UNICORE/X) provides a possibility to manipulate file Access Control Lists (ACLs). To use
ACLs, the appropriate support must be available from the underlying file system. Currently, only the so called POSIX
ACLs are supported (so called as in fact the relevant documents POSIX 1003.1e/1003.2c were never finalized), using
the popular setfacl and getfacl commands. Most current file systems provide support for the POSIX ACLs.

Note: Note, that the current version is relying on extensions of the ACL commands which are present in the Linux
implementation. In case of other implementation (e.g. BSD) the ACL module should be extended, otherwise the default
ACLs (which are used for directories) support will not work.

To enable POSIX ACL support you typically must ensure that:

• the required file systems are mounted with ACL support turned on,

• the getfacl and setfacl commands are available on your machine.

Configuration of ACLs is performed in the tsi.properties file. First of all, you can define a location of setfacl
and getfacl programs with tsi.setfacl and tsi.getfacl properties. By providing absolute paths you can use
non-standard locations, typically it is enough to leave the default, non-absolute values which will use programs as
available under the standard shell search path. Note that if you will comment any of those properties, the POSIX ACL
subsystem will be turned off.

Configuration of ACL support is per directory, using properties of the format: tsi.acl.PATH, where PATH is an
absolute directory path for which the setting is being made. You can provide as many settings as required, the most
specific one will be used. The valid values are POSIX and NONE respectively for POSIX ACLs and for turning off the
ACL support.

Consider an example:

tsi.acl./=NONE
tsi.acl./home=POSIX
tsi.acl./mnt/apps=POSIX
tsi.acl./mnt/apps/external=NONE

The above configuration turns off ACL for all directories, except for everything under /home and everything under
/mnt/apps with the exception of /mnt/apps/external.

Warning: Do not use symbolic links or .. or . in properties configuring directories - use only absolute, normalized
paths. Currently spaces in paths are also unsupported.

Note: The ACL support settings are typically cached on the UNICORE/X side (for a few minutes). Therefore, after
changing the TSI configuration (and after resetting the TSI) you have to wait a bit until the new configuration is applied
also in UNICORE/X.

5.3. TSI 211

UNICORE Docs

ACL limitations

There is no ubiquitous standard for file ACLs. POSIX draft ACLs are by far the most popular however there are several
other implementations. Here is a short list that should help to figure out the situation:

• POSIX ACLs are supported on Linux and BSD systems.

• The following file systems support POSIX ACLs: Lustre, ext{2,3,4}, JFS, ReiserFS and XFS.

• Solaris ACLs are very similar to POSIX ACLs and it should be possible to use TSI to manipulate them at least
partially (remove all ACL operation won’t work for sure and note that usage of Solaris ACLs was never tested).
Full support may be provided on request.

• NFS version 4 provides a completely different, and currently unsupported implementation of ACLs.

• NFS version 3 uses ACLs with the same syntax as Solaris OS.

• There are also other implementations, present on AIX or Mac OS systems or in AFS FS.

Note that in future more ACL types may be supported and will be configured in the same manner, just using a different
property value.

5.3.1.3.5 Enabling SSL for the UNICORE/X - TSI communication

SSL support should be enabled for the UNICORE/X - TSI communication to increase security. This is a MUST when
UNICORE/X and TSI run on the same host, and/or user login is possible on the UNICORE/X host, to prevent attackers
gaining control over the TSI.

You need:

• a private key and certificate for the TSI,

• the CA certificate of the TSI certificate,

• the DN (subject distinguished name) of the UNICORE/X servers that shall be allowed to connect to the TSI,

• the CA certificate of the UNICORE/X certificate.

The certificate of the TSI signer CA must be added to the UNICORE/X truststore.

The following configuration options must be set in tsi.properties:

tsi.keystore file containing the private TSI key in PEM format

tsi.keypass password for decrypting the key

tsi.certificate file containing the TSI certificate in PEM format

tsi.truststore file containing the certificate of the accepted CA(s) in PEM format

tsi.allowed_dn.NNN allowed DNs of UNICORE/X servers in RFC format

SSL is activated if the keystore file is specified in tsi.properties.

The truststore file contains the CA cert(s):

-----BEGIN CERTIFICATE-----

... PEM data omitted ...

-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----

(continues on next page)

212 Chapter 5. Administrator Documentation

UNICORE Docs

(continued from previous page)

... PEM data omitted ...

-----END CERTIFICATE-----

The tsi.allowed_dn.NNN properties are used to specify which certificates are allowed, for example,

tsi.allowed_dn.1=CN=UNICORE/X 1, O=UNICORE, C=EU
tsi.allowed_dn.2=CN=UNICORE/X 2, O=UNICORE, C=EU

Attention: If you do not specify any access control entries, all certificates issued by trusted CAs are allowed to
connect to the TSI. Be very careful to prevent illicit access to the TSI!

When UNICORE/X connects, its certificate is checked:

• the UNICORE/X cert has to be valid (i.e. issued by a trusted CA and not expired),

• the subject of the UNICORE/X cert is checked against the configured ACL (list of allowed DNs).

On the UNICORE/X side, set the following property (usually in the xnjs.properties file):

enable SSL using the UNICORE/X key and trusted certificates
CLASSICTSI.ssl.disable=false

5.3.1.4 Adapting the TSI to your system

5.3.1.4.1 Environment and paths

The environment and path settings for the main TSI process and all its child processes (TSI workers) are controlled in
the startup.properties file.

Important: Please revise the path and environment settings in the main startup.properties config file.

These should include the path to all executables required by the TSI, notably the batch system commands, and if
applicable, the ACL commands.

As the TSI process runs as root, and switches to the required user/group IDs before each request, setting up the required
environment per user has to be done carefully. Per-user settings are usually done on the UNICORE/X level using IDB
templates, please refer to the UNICORE/X documentation.

5.3. TSI 213

UNICORE Docs

5.3.1.4.2 Assigning groups to the current user

The current user will all her groups assigned. On some systems the default Python function used for resolving a user’s
groups does not see all the groups. If this is the case, set in tsi.properties:

tsi.use_id_to_resolve_gids=true

This will use a different implementation via the system command id -G <username>.

5.3.1.4.3 Batch system integration: BSS.py

The file BSS.py contains the functions specific to the used batch system, specifically it prepares the job script, deals
with job status reporting and job control.

Even if you run a well-supported batch system such as Torque or Slurm, you should make sure that the job status
reporting works properly.

Also, any site-specific resource settings (e.g. settings related to GPUs, network topology etc) are dealt within this file.

5.3.1.4.4 Reporting free disk space

UNICORE will often invoke the df command which is implemented in the IO.py file in order to get information about
free disk space. On some distributed file systems, executing this command can take quite some time, and it may be
advisable to modify the df function to optimize this behaviour.

5.3.1.4.5 Reporting computing time budget

If supported by your site installation, users might have a computing time budget allocated to them. The BSS.py module
contains a function get_budget that is used to retrieve this budget as a number e.g. representing core-hours. By
default, this function returns -1 to indicate that computing time is not budgeted.

5.3.1.4.6 Filtering cluster working nodes

Starting from version 6.5.1 the TSI can filter nodes based on the properties defined for nodes in BSS configuration.
It can limit working nodes only to those having shared file system. It can be defined in the tsi.properties file by
setting the property tsi.nodes_filter.

Attention: Note that this feature is not working for all batch systems. Currently, it is supported in Torque and
SLURM.

214 Chapter 5. Administrator Documentation

https://github.com/UNICORE-EU/tsi/blob/master/lib/BSS.py
https://github.com/UNICORE-EU/tsi/blob/master/lib/IO.py
https://github.com/UNICORE-EU/tsi/blob/master/lib/BSS.py

UNICORE Docs

5.3.1.4.7 Resource reservation

The reservation module Reservation.py is responsible for interacting with the reservation system of your batch system.

Attention: Note that this feature is not available for all batch systems. Currently, it is included in Torque and
SLURM.

5.3.1.5 Execution model

The main TSI process will respond to UNICORE/X requests and start up TSI workers to do the work for the UNI-
CORE/X server. The TSI workers connect back to the UNICORE/X server.

It is possible to use the same TSI from multiple UNICORE/X servers.

Since the main TSI process runs with elevated privileges, it must authenticate the source of commands as legitimate.
To do this, the TSI is initialised with the address(es) of the machine(s) that runs the UNICORE/X. The TSI will only
accept requests from the defined UNICORE/X machine(s). The callback port can be pre-defined in tsi.properties
as well. If it is undefined, the TSI will attempt to read it from the UNICORE/X connect message.

Note that it is possible to enable SSL on the TSI listen port, see below. In SSL mode, there is no check of the UNI-
CORE/X address.

If the UNICORE/X process shuts down, any TSI workers that are connected to UNICORE/X will also shut down. How-
ever, the main TSI process will continue executing and will spawn new TSI workers processes when the UNICORE/X
server is restarted. Therefore, it is not necessary to restart the TSI daemon when restarting UNICORE/X.

If a TSI worker stops execution, UNICORE/X will request a new one to replace it.

If the main TSI process stops execution, then all TSI processes will also be killed. The TSI must then be restarted, this
does not happen automatically.

5.3.1.6 PAM, systemd and user slices

By default, user tasks (such as user scripts on the TSI node) will run in the same slice as the TSI itself.

You can enable PAM, which will open a user session before running the user’s tasks, so the tasks will be run in the
correct user slice, and thus the system’s resource management will properly apply also to tasks started via UNICORE.

To do this, set in tsi.properties

tsi.open_user_sessions=1

By default, a PAM module unicore-tsi is expected (/etc/pam.d/unicore-tsi). For example, this could contain:

#%PAM-1.0
auth sufficient pam_rootok.so
session required pam_limits.so
session required pam_unix.so
session required pam_systemd.so

5.3. TSI 215

https://github.com/UNICORE-EU/tsi/blob/master/lib/Reservation.py

UNICORE Docs

5.3.1.7 Directories used by the TSI

The TSI must have access to the filespace directory specified in the UNICORE/X configuration (usually the property
XNJS.filespace in xnjs.properties) to hold job directories. These directories are written with the TSI’s uid set
to the Unix user for which the work is being performed. If you use a shared directory for all users, this directory must
be world writable. The required Unix access mode is 1777.

5.3.1.8 Running the TSI

For the Linux packages, the TSI is pre-configured for systemd, and if you want to run it as a a system service, you can
use systemctl:

$ sudo systemctl add-wants multi-user.target unicore-tsi-variant

(where variant stands for the concrete TSI implementation, such as nobatch or slurm)

5.3.1.8.1 Starting

If installed from an Linux package, the TSI can be started via systemd:

$ sudo systemctl start unicore-tsi-variant

The TSI can also be started using the script BIN/start.sh.

5.3.1.8.2 Stopping the TSI

If installed from an Linux package, the TSI can be stopped via systemd:

$ sudo systemctl stop unicore-tsi-variant

The TSI can also be stopped using the script BIN/stop.sh (cf. section Scripts). This will stop the main TSI process
and the tree of all spawned processes including the TSI workers.

TSI worker processes (but not the main process) will stop executing when the UNICORE/X server it connects to stops
executing.

It is possible to stop a TSI worker process, but this could result in the failure of a job (the UNICORE/X server will
recover and create new TSI processes).

5.3.1.8.3 TSI logging

By default, the TSI logs to the system journal (syslog), and you can read the logs via journalctl, for example,

$ sudo journalctl -u unicore-tsi-variant

To print logging output to stdout instead, set

tsi.use_syslog=false``

216 Chapter 5. Administrator Documentation

UNICORE Docs

in the CONF/tsi.properties file.

Since stdout is redirected to a file (see the STARTLOG definition in CONF/startup.properties) the logging output
will be in that file.

For more verbose logging, set

tsi.debug=true

in CONF/tsi.properties.

5.3.1.9 Porting the TSI to other batch systems

Most variations are found in the batch subsystem commands, porting to a new BSS usually requires changes to the
following files:

• BSS.py

• Reservation.py (reservation functions if applicable)

It is recommended to start from a up-to-date and well-documented TSI, e.g. the Torque or Slurm variation. If you have
further questions regarding porting to a new batch system, please use the unicore-support or unicore-devel mailing lists.

5.3.1.10 Securing and hardening the system

In a normal multi-user production setting, the TSI runs with elevated privileges, and thus it is critical to prevent illicit
access to the TSI, which would allow accessing or destroying arbitrary user data, as well as impersonating users and
generally wreaking havoc.

Once the connection to the UNICORE/X is established, the TSI is controlled via a simple text-based API. An attacker
allowed to connect to the TSI can very easily execute commands as any valid (non-root) user.

In non-SSL mode, the TSI checks the IP address of the connecting process, and compare it with the expected one which
is configured in the tsi.properties file.

In SSL mode, the TSI checks the certificate of the connecting process, by validating it against its truststore which is
configured in the tsi.properties file.

We recommed the following measures to make operating the TSI secure:

• Prevent all access to the TSI’s config and executable files. This is usually done by setting appropriate file per-
missions, and usually already taken care of during installation (please see the section File permissions).

• Make sure only UNICORE/X can connect to the TSI. This is most reliably done by configuring SSL for the UNI-
CORE/X to TSI communication (please see the section Enabling SSL for the UNICORE/X - TSI communication).

• If SSL cannot be used, the UNICORE/X should run on a separate machine.

• On the UNICORE/X machine, user login should be impossible. This will prevent bypassing the IP check (in
non-SSL mode) and/or accessing the UNICORE/X private key (in SSL mode).

• If you for some reason HAVE to run UNICORE/X and TSI on the same machine, and user login or execution
of user commands is possible on that machine, you MUST use SSL, and take special care to protect the UNI-
CORE/X config files and keystore using appropriate file permissions. Not using SSL in this situation is a serious
risk! An attacker connecting to the TSI can impersonate any user and access any user’s data (except for the root
user).

5.3. TSI 217

https://github.com/UNICORE-EU/tsi/blob/master/lib/BSS.py
https://github.com/UNICORE-EU/tsi/blob/master/lib/Reservation.py
mailto:unicore-support@lists.sf.net
mailto:unicore-devel@lists.sf.net

UNICORE Docs

• An additional safeguard is to establish monitoring for UNICORE/X, and kill the TSI in case the UNICORE/X
process terminates.

Important: Summarizing, it is critical to protect config files and executable files. We strongly recommend to configure
SSL. Using SSL is a MUST in deployments where users can login to the UNICORE/X machine.

5.3.2 TSI API

This document describes the API to the TSI as used by UNICORE/X (more concretely, the XNJS subsystem of UNI-
CORE/X). The parts of the TSI that interact with the target system have been isolated and are documented here with
their function calls.

The functions are implemented in the TSI as calls to Python methods. Input data from the UNICORE/X server is passed
as arguments to the method. Output is returned to the UNICORE/X server by calling some global methods documented
below or by directly accessing the TSI’s command and data channels. TSIs are shipped with default implementations
of all the functions and can be tailored by changing the supplied code or by implementing new versions of the functions
that need to change for the system.

Note that this document is not a complete definition of the API, it is a general overview. The full API specification can
be derived by reading the TSI code supplied with a UNICORE release.

5.3.2.1 Initialisation

For connecting to the UNICORE/X server, a callback mechanism is used. First, the UNICORE/X server will contact
the main TSI process to request the creation of a new TSI worker process. The main TSI will call back the UNICORE/X
server and create the necessary communications. It will receive any initialisation information send by the UNICORE/X
server. After successful creation of the TSI worker process, the UNICORE/X server can communicate with the worker
and ask it to execute commands. The UNICORE/X-to-TSI connection uses two sockets, a data and a command socket.

After initialisation is complete, the process() function (in the TSI.py module) is entered, which reads messages from
the UNICORE/X server and dispatches processing to the various TSI functions.

5.3.2.2 Messages to the UNICORE/X server

The TSI provides methods to pass messages to the UNICORE/X server. In particular the UNICORE/X server expects
every method to reply at the end of its execution. The messaging methods are implemented in Connector.py:

• write_message(string) Sends a message to the UNICORE/X server

• ok(string) Sends a message to the UNICORE/X server to say that execution of the command was successful.
This message always starts with a line TSI_OK

• failed(string) Sends a message to the UNICORE/X server to say that execution of the command failed. The
string is sent to the UNICORE/X server as part of the failure message. This message always starts with a line
TSI_FAILED

Messages have to end with a special tag ENDOFMESSAGE, since the command sockets are left open for receiving the
next command.

218 Chapter 5. Administrator Documentation

https://github.com/UNICORE-EU/tsi/blob/master/lib/TSI.py
https://github.com/UNICORE-EU/tsi/blob/master/lib/Connector.py

UNICORE Docs

5.3.2.3 User identity and environment setting

In production mode the TSI will be started as a privileged user capable of changing the TSI worker process’ uid and gid
to the values requested by the UNICORE/X server. This change is made before the TSI executes any external actions.
The idenity is passed as a line in the message string sent by the UNICORE/X server, which starts with #TSI_IDENTITY.

The TSI performs three types of work: the execution and monitoring of jobs prepared by the user, transfer and ma-
nipulation of files on storages and the management of Uspaces (job working directory). Only the first type of work,
execution of jobs, needs a complete user environment. The other two types of TSI work use a restricted set of standard
commands (mkdir, cp, rm, etc) and should not require access to specific environments set up by users. Furthermore,
job execution is not done directly by the TSI but is passed on to the local Batch Subsystem which ensures that a full
user environment is set before a job is executed. Therefore, the TSI only needs to set a limited user environment for
any child processes that it creates. The TSI sets the following environment in any child process:

• $USER This is set to the user name supplied by the UNICORE/X server.

• $LOGNAME This is set to the user name supplied by the UNICORE/X server.

• $HOME This is set to the home directory of the user as given by the target system’s password file.

• $PATH This is inherited from the parent TSI process (see the tsi.properties file).

Localisations of the TSI will also need to set any other environment necessary to access the BSS.

For testing, the TSI may be started as a non-privileged user, when no changing of uid and gid is possible.

5.3.2.4 Method dispatch

To determine which method to call, the TSI checks the message from the UNICORE/X server for the occurrence of
special tags (followed by a new line). For example, the occurrence of a #TSI_SUBMIT tag will lead to execution of
the BSS.submit() function. Before entering any method, user/group ID switching is performed, as explained in the
previous section.

5.3.2.5 Job execution and job control functions

5.3.2.5.1 Job submission (#TSI_SUBMIT)

The submit(string) function submits a user script to the BSS.

Input

As input, the script to be executed is expected. The string from the UNICORE/X server is processed to replace all
instances of $USER by the user’s name and $HOME by the user’s home directory. No further processing needs to be done
on the script.

The UNICORE/X server will embed information in the script that the TSI may need to use. This information will be
embedded as comments so no further processing is needed. Each piece of information will be on a separate line with
the format:

#TSI_<name> <value>

If the value is the string NONE, then the particular information should not be supplied to the BSS during submission.
The information is:

• #TSI_JOBNAME This is the name that should be given to the job. If this is NONE (or is determined to be invalid),
the TSI will use a default jobname.

5.3. TSI 219

UNICORE Docs

• #TSI_PROJECT The user’s project (for accounting).

• #TSI_STDOUT# and #TSI_STDERR The names for standard output and error files.

• #TSI_OUTCOME_DIR The directory where to write the stdout and stderr files to. In general this is the same as
#TSI_USPACE_DIR#.

• #TSI_USPACE_DIR The initial working directory of the script (i.e. the Uspace directory).

• #TSI_TIME The run time (wall clock) limit requested by this job in seconds.

• #TSI_MEMORY# The memory requirement of the job. The UNICORE/X server supplies this as a megabytes per
node value.

• #TSI_TOTAL_PROCESSORS The number of processors required by the job.

• #TSI_PROCESSORS The number of processors per node required by the job.

• #TSI_NODES The number of nodes required by this job.

• #TSI_QUEUE The BSS queue to which this job should be submitted.

• #TSI_UMASK The default umask for the job.

• #TSI_EMAIL The email address to which the BSS should send any status change emails.

• #TSI_RESERVATION_REFERENCE If the job should be run in a reservation, this parameter contains the reserva-
tion ID.

• #TSI_ARRAY If multiple instances of the same job are to be submitted, this contains the list of array IDs, e.g.
“1-100”, or “2,4,6”.

• #TSI_ARRAY_LIMIT If multiple instances of the same job are to be submitted, this optionally limits the number
of concurrently running instances. E.g. 5 will limit the number of instances to 5.

• #TSI_BSS_NODES_FILTER <filterstring> Administrators can define a string in the IDB which is to be used
as nodes filter, if the BSS supports this.

In addition to these, additional site-specific resources (e.g. GPUs) can be defined on the UNICORE/X server, which
are passed via #TSI_SSR_<resource_name> <resource_value> lines.

Output

• Normal: the output is the BSS identifier of the job unless the execution was interactive. In this case the execution
is complete when the TSI returns from this call and the output is that from ok().

• Error: failed() called with the reason for failure

Raw job submission

If the instruction #TSI_JOB_MODE raw is encountered in the submit script, the TSI will ignore any further instruction
relevant for batch system submission. Instead a second instruction #TSI_JOB_FILE <filename> determines a file
that will be read and used as BSS specific information.

220 Chapter 5. Administrator Documentation

UNICORE Docs

Resource allocation job

If the instruction #TSI_JOB_MODE allocate is encountered in the submit script, the TSI will use the requested re-
sources as in a normal batch job submission. The TSI will create a script that only allocates resources from the BSS,
but does not launch anything. The allocation identifier will be written to a file BSS_ALLOCATION_ID in the working
directory.

Once this job has finished, the allocation ID can be read from the BSS_ALLOCATION_ID, and can be used in subsequent
jobs.

5.3.2.5.2 Script execution (#TSI_EXECUTESCRIPT)

The function TSI.execute_script() executes the script directly from the TSI process, without submitting the script
to the batch subsystem. This function is used by the UNICORE/X server to create and manipulate the Uspace, to
perform file management functions, etc. The UNICORE/X server also uses this to execute user defined code, for
example when user precommands or postcommands are defined in execution environments.

Input

The script to be executed. The string from the UNICORE/X server is processed to replace all instances of $USER by
the user’s name and $HOME by the user’s home directory. No further processing needs to be done on the script. If a
#TSI_DISCARD_OUTPUT string is present, no output will be gathered.

Output

• Normal: The script has been executed. Concatenated stderr and stdout from the execution of the script is sent to
the UNICORE/X server following the ok() call.

• Error: failed() called with the reason for failure.

5.3.2.5.3 Job control

• #TSI_ABORTJOB The BSS.abort_job() function sends a command to the BSS to abort the named BSS job.
Any stdout and stderr produced by the job before the abort takes effect must be saved.

• #TSI_CANCELJOB The BSS.cancel_job() function sends a command to the BSS to cancel the named BSS
job. Cancelling means both finishing execution on the BSS (as for abort) and removing any stdout and stderr.

• #TSI_HOLDJOB The BSS.hold_job() function sends a command to the BSS to hold execution of the named
BSS job. Holding means suspending execution of a job that has started or not starting execution of a queued job.
Note that suspending execution can result in the resources allocated to the job being held by the job even though
it is not executing and so some sites may not allow this. This is dealt with by the relaxed post condition below.
Some sites can hold a job’s execution and release the resources held by the job (leaving the job on the BSS so
that it can resume execution). This is called freezing. The UNICORE/X server can send a request for a freeze
(#TSI_FREEZE) which the TSI may execute, if there is no freeze command initialised the TSI may execute a hold
in its place An acceptable implementation is for hold_job to return without executing a command.

• #TSI_RESUMEJOB The BSS.resume_job() function sends a command to the BSS to resume execution of the
named BSS job. Not that suspending execution can result in the resources allocated to the job being held by the
job even though it is not executing and so some sites may not allow this. An acceptable implementation is for
resume_job to return without executing a command (if hold_job did the same).

5.3. TSI 221

UNICORE Docs

Input

All job control functions require the BSS job ID as parameter in the form #TSI_BSSID <identifier>.

Output

• Normal: the job control function was invoked. No extra output.

• Error: failed() called with the reason for failure.

5.3.2.5.4 Detailed job info (#TSI_GETJOBDETAILS)

#TSI_GETJOBDETAILS the BSS.get_job_details() function sends a command to the BSS requesting detailed in-
formation about the job. The format and content is BSS specific, and is sent to UNICORE/X without any further
processing.

Input

All job control functions require the BSS job ID as parameter in the form #TSI_BSSID <identifier>.

Output

• Normal: detailed job information sent via ok().

• Error: failed() called with the reason for failure.

5.3.2.5.5 Status listing (#TSI_QSTAT)

This BSS.get_status_listing() function returns the status of all the jobs on the BSS that have been submitted
through any TSI providing access to the BSS.

This method is called with the TSI’s identity set to the special user ID configured in the UNICORE/X server
(CLASSICTSI.priveduser property). This is because the UNICORE/X server expects the returned listing to con-
tain every UNICORE job from every UNICORE user but some BSS only allow a view of the status of all jobs to
privileged users.

Input

None.

222 Chapter 5. Administrator Documentation

UNICORE Docs

Output

• Normal: The first line is QSTAT. There follows an arbitrary number of lines, each line containing the status of
a job on the BSS with the following format: id status <queuename>, where id is the BSS identifier of the
job and status is one of: QUEUED, RUNNING, SUSPENDED or COMPLETED. Optionally, the queue name can be
listed as well. The output must include all jobs still on the BSS that were submitted by a TSI executing on the
target system (including all those submitted by TSIs other than the one executing this command). The output
may include lines for jobs on the BSS submitted by other means.

• Error: failed() called with the reason for failure.

5.3.2.5.6 Getting the user’s remaining compute budget (#TSI_GET_COMPUTE_BUDGET)

This BSS.get_budget() function returns the remaining compute budget for the user (in core hours) or -1 if not known
or not applicable.

Input

None.

Output

• Normal: Budget info (see format below) is sent via ok().

• Error: failed() called with the reason for failure.

Format

The output is a multiline string which each line of the form

<PROJECT> <ABSOLUTE_BUDGET> <PERCENTAGE> <UNITS>

where,

PROJECT the project / budget account name

ABSOLUTE_BUDGET the absolute value (integer) of compute time remaining

PERCENTAGE the relative amount (integer, 0-100) of compute time remaining

UNITS the units used (should be one of: core-h, node-h, cpu-h)

5.3.2.6 I/O functions

5.3.2.6.1 Reading a file (#TSI_GETFILECHUNK)

The IO.get_file_chunk() function is called by the UNICORE/X server to fetch the contents of a file.

5.3. TSI 223

UNICORE Docs

Input

• #TSI_FILE <file name> The full path name of the file to be sent to the UNICORE/X server

• #TSI_START <start byte> Where to start reading the file

• #TSI_LENGTH <chunk length> How many bytes to return

The file name is modified by the TSI to substitute all occurrences of the string $USER by the name of the user and all
occurrences of the string $HOME by the home directory of the user.

Output

• Normal: The UNICORE/X server has a copy of the request part of the file (sent via the data socket).

• Error: failed() is called with the reason for failure.

5.3.2.6.2 Writing files (#TSI_PUTFILECHUNK)

The put_file_chunk() function is called by the UNICORE/X server to write the contents of one file to a directory
accessible by the TSI.

Input

• The #TSI_FILESACTION parameter contains the action to take if the file exists (or does not):

– 0 = don’t care,

– 1 = only write if the file does not exist,

– 2 = only write if the file exists,

– 3 = append to file.

• The #TSI_FILE parameter contains the filname and permissions.

• The #TSI_LENGTH parameter contains the number of bytes to read from the data channel and write to disk.

The TSI replies with TSI_OK, and the data to write is then read from the data channel.

Output

• Normal: The TSI has written the file data.

• Error: failed() called with the reason for failure.

224 Chapter 5. Administrator Documentation

UNICORE Docs

5.3.2.6.3 File ACL operations (#TSI_FILE_ACL)

The process_acl function allows to set or get the access control list on a given file or directory. Please refer to the
file ACL.py to learn about this part of the API.

5.3.2.6.4 Listing directories and getting file information (#TSI_LS)

This function allows to list directories or get information about a single file.

Input

• The #TSI_FILE parameter contains the file/directory name.

• The #TSI_LS_MODE parameter contains the kind of listing:

– A = info on a single file,

– R = recursive directory listing,

– N = normal directory listing.

Output

• Normal: The TSI writes the listing to the command socket, see the IO.py file for a detailed description of the
format

• Error: TSI replies with TSI_FAILED and the reason for failure.

5.3.2.6.5 Getting free disk space (#TSI_DF)

This function allows to get the free disk space for a given path.

Input

The #TSI_FILE parameter contains the file/directory name.

Output

• Normal: The TSI writes the disk space info to the command socket, see the IO.py file for a detailed description
of the format.

• Error: TSI replies with TSI_FAILED and the reason for failure.

5.3. TSI 225

https://github.com/UNICORE-EU/tsi/blob/master/lib/ACL.py
https://github.com/UNICORE-EU/tsi/blob/master/lib/IO.py
https://github.com/UNICORE-EU/tsi/blob/master/lib/IO.py

UNICORE Docs

5.3.2.7 Resource reservation functions

The TSI offers functionality to create and manage reservations. These are implemented in the file Reservation.py,
different versions for different scheduling systems exist.

5.3.2.7.1 Creating a reservation (#TSI_MAKE_RESERVATION)

This is used to create a reservation.

Input

• #TSI_RESERVATION_OWNER <xlogin>: The user ID (xlogin) of the reservation owner,

• #TSI_STARTTIME <time>: The requested start time in ISO8601 format (yyyy-MM-ddT HH:mm:ssZ),

• The requested resources are passed in in the same way as for job submission.

Output

• Normal: The command replies with a single reservation ID string.

• Error: failed() called with the reason for failure.

Querying a reservation (#TSI_QUERY_RESERVATION)

This is used to query the status of a reservation.

Input

• #TSI_RESERVATION_REFERENCE <reservation_ID>: The reservation reference that shall be queried.

Output

• Normal: The command produces two lines. The first line contains the status (UNKNOWN, INVALID, WAIT-
ING, READY, ACTIVE, FINISHED or OTHER) and an optional start time (ISO 8601). The second line contains
a human-readable description.

• Error: failed() called with the reason for failure.

5.3.2.7.2 Cancelling a reservation (#TSI_CANCEL_RESERVATION)

This is used to cancel a reservation.

226 Chapter 5. Administrator Documentation

https://github.com/UNICORE-EU/tsi/blob/master/lib/Reservation.py

UNICORE Docs

Input

• #TSI_RESERVATION_REFERENCE <reservation_ID>: The reservation reference that is to be cancelled.

Output

• Normal: ok() called with no special output.

• Error: failed() called with the reason for failure.

5.3.2.8 Miscellaneous functions

5.3.2.8.1 Getting TSI version information (#TSI_PING)

The TSI.ping() function returns the TSI version.

Input

None.

Output

• TSI version string as defined in the TSI.py file

5.3.2.8.2 Getting user information (#TSI_GET_USER_INFO)

The TSI.get_user_info() function returns the user’s HOME directory, and a list of public keys, which is read froma
list of configurable files in the user’s HOME directory (defaulting to .ssh/accepted_keys).

Input

None.

Output

• User info (format below) is sent via +message()+

5.3. TSI 227

UNICORE Docs

Format

The output is a multiline string

home: <user_home_directory>
Accepted key 1: <public_key_1>
Accepted key 2: <public_key_2>
...
status: <status message>

5.3.3 Building the TSI

Clone the git repository:

$ git clone https://github.com/UNICORE-EU/tsi
$ cd tsi

Use the supplied Makefile to run tests and/or build packages for the various supported batch systems.

You will need Java, Maven and Ant to build RPM/DEB packages.

5.3.3.1 Packaging

Run

$ make <bss>-<type>

where <bss> is one of: nobatch, slurm, torque, lsf and <type> is one of: tgz, deb, rpm.

5.3.3.2 Generic binary TGZ

To create a generic binary archive that can be used to install any version of the TSI via the Install.sh script, run

$ make clean tgz

5.4 XUUDB

The UNICORE XUUDB is a service acting as an attribute source as part of a UNICORE installation. It is an optional
service, that is best suited as a per-site service, providing attributes for multiple UNICORE/X-like services at a site.

The XUUDB maps a UNICORE user identity (which is formally an X.500 distinguished name (DN)) to a set of
attributes. The attributes are typically used to provide local account details (uid, gid(s)) and commonly also to provide
authorization information, i.e. the user’s role.

XUUDB Manual User Manual with detailed instructions and examples for using the XUUDB.

228 Chapter 5. Administrator Documentation

UNICORE Docs

Fig. 5.7: UNICORE XUUDB

5.4.1 XUUDB Manual

The XUUDB server is an Attribute Source implementation which can be used by UNICORE servers. It is used to map
a UNICORE identity (an X500 distinguished name) to authorisation and incarnation attributes. The XUUDB is also
capable of performing dynamic mappings of incarnation attributes, using a rule engine.

For more information about UNICORE visit https://www.unicore.eu.

5.4.1.1 Overview

The UNICORE XUUDB is used to map a UNICORE user identity (an X.500 distinguished name (DN)) to a set of
attributes. The attributes are typically used to provide local account details (uid, gid(s)) and sometimes also to provide
authorization information, i.e. the user’s role.

The UNICORE XUUDB is best suited as a site-service. Theoretically, it can be used for multiple sites, however as it
offers limited authorization capabilities and doesn’t allow for grouping users, it is better to use the more flexible Unity
server in such a case. In case of the simple one host-service XUUDB sometimes can be replaced by a simple file storing
the mappings. Please refer to the UNICORE/X documentation for more information.

The XUUDB offers two web services, one for querying, and one for administration of the users’ database. There are
several clients which can use the XUUDB server:

• Admin client (see The admin client) can be used to control the XUUDB database contents.

• UNICORE servers include the XUUDB client code (it is named XUUDB Attribute Information Point) and can
consume and process the XUUDB information.

Both admin and client access to the XUUDB can be protected by a client-authenticated SSL.

The XUUDB can map users using two different mechanisms:

• classic or static mechanism, where administrator enters mappings for each DN manually,

5.4. XUUDB 229

https://www.unicore.eu
https://unity-idm.eu/
https://unity-idm.eu/

UNICORE Docs

• dynamic mechanism, where administrator only define rules stating what attributes should be assigned to UNI-
CORE users fulfilling rule’s condition.

5.4.1.1.1 The classic mapping

The classic or static mechanism when UNICORE is used as a gateway to HPC site, with a well defined set of users. It
is also useful in federated scenarios when a dedicated, external infrastructure is build to maintain a global list of users.

Using it it is possible to set a list of UNIX logins (aka XLogins or uids), a list of UNIX groups (aka projects or gids)
and the role attribute used for authorization. The first uid and the first gid is assumed to be the default one but Grid
users are allowed to choose any of the available.

In case of the default authorization policy the user role is required to get a normal access to the site, the admin role
grants super-user privileges, and the banned role bans the user.

The XUUDB stores and compares only distinguished names (DNs), not full certificates.

Multiple UNICORE sites can share the XUUDB, even if the attributes are different per UNICORE site. Sites are
grouped by the so-called GCID (grid component ID).

5.4.1.1.2 The dynamic mapping

The dynamic mechanism is used to map users who were already authorized, therefore it doesn’t make sense (and is
not possible) to assign the authorization attributes as role. The dynamic mechanism is useful in deployments where a
site doesn’t know the precise list of its users (which are maintained externally), or simply doesn’t want to define local
accounts for each UNICORE user. In other words, the site relies on a trusted 3rd party to maintain a list of genuine and
authorized users, and automatically assigns a local account to each user.

As it will be shown later on dynamic mappings can be also used in other scenarios, also being complementary to static
mappings.

Dynamic mappings configuration is described in the section Dynamic mappings configuration.

Important: IMPORTANT NOTE ON PATHS

XUUDB is distributed either as an platform independent and portable bundle (as part of the UNICORE quickstart
package) or as an installable, platform dependent package such as RPM.

Depending on the installation package used paths are different. If installing using distribution-specific package the
following path prefixes are used:

CONF=/etc/unicore/xuudb
BIN=/usr/sbin
ADMIN=/usr/sbin/unicore-xuudb-admin
LOG=/var/log/unicore/xuudb

If installing using portable bundle all XUUDB files are installed under a single directory. Path prefixes used then are
as follows, where INST is a directory where the XUUDB was installed:

CONF=INST/conf
BIN=INST/bin
ADMIN=BIN/admin.sh
LOG=INST/log

The above variables (CONF, BIN, ADMIN and LOG) are used throughout the rest of this manual.

230 Chapter 5. Administrator Documentation

UNICORE Docs

5.4.1.2 Installation

The UNICORE XUUDB is distributed in the following formats:

• As a part of a platform independent installation bundle called UNICORE core server bundle.

• As a platform-specific binary package. available for RedHat (Centos) and Debian platforms. Those packages
are not tested on all possible platforms, but should work without any problems with other versions of similar
distributions.

In both cases an installation of XUUDB installs both XUUDB Server and XUUDB admin client.

After installing the server you will have to configure it. This is described in the section The XUUDB server.

5.4.1.2.1 Installation from Core Server Bundle

Download the core server bundle from the UNICORE project website at https://sourceforge.net/projects/unicore/files/
Servers/Core.

5.4.1.2.2 Installation from RPM or DEB packages

An up-to-date list of the available repositories is given on the following page https://sourceforge.net/p/unicore/wiki/
Linux_Repositories/.

The preferred way is to use Yum or APT to install (and subsequently update) XUUDB.

After the repository is configured, the following command will install the XUUDB:

$ yum install unicore-xuudb

or in case of Debian systems:

$ apt-get install unicore-xuudb

5.4.1.3 The XUUDB server

5.4.1.3.1 Security

Usually, client-authenticated SSL is used to protect the XUUDB. For this you will need certificates for the XUUDB
server and all Grid components that want to talk to the XUUDB. In general, the UNICORE servers (like UNICORE/X)
and the XUUDB-admin client need to connect to the XUUDB-server. To make SSL connections possible, you have to
put the following certificates as trusted certs into the XUUDB’s server truststore:

• CA certificate(s) of the UNICORE/X server(s) that query the XUUDB

• CA certificate(s) of the XUUDB-admin user certificate(s)

and XUUDB’s CA certificate in the truststores of its clients.

XUUDB server may be run using a plain HTTP port. Then there is no access control at all, so this mode is useful only
in environments where XUUDB port is fully protected otherwise against unauthorised access.

5.4. XUUDB 231

https://sourceforge.net/projects/unicore/files/Servers/Core
https://sourceforge.net/p/unicore/wiki/Linux_Repositories/
https://sourceforge.net/projects/unicore/files/Servers/Core
https://sourceforge.net/projects/unicore/files/Servers/Core
https://sourceforge.net/p/unicore/wiki/Linux_Repositories/
https://sourceforge.net/p/unicore/wiki/Linux_Repositories/

UNICORE Docs

5.4.1.3.2 Administrative access

The XUUDB provides two kinds of web service interfaces, one for querying the XUUDB (i.e. mapping UNICORE
users to local UNIX users), and a second one for administration of the XUUDB (i.e. adding and editing entries). All
access to the XUUDB (including the administration utility!) is through these web services. To prevent arbitrary users
from modifying the XUUDB, the administrative interface has to be protected.

To protect the administrative interface, an ACL file is used, which is a plain text file containing the distinguished names
of the administrators. At least, it has to contain the DN of the certificate used by the administration utility.

As the static XUUDB data is rather sensitive (at least if privacy of the users is a concern) and dynamic mappings often
require some local modifications (e.g. assigning an account from a pool) it is often desirable to protect also the query
operations. The XUUDB server offers such an option (see Base server settings).

The ACL file can be changed at runtime to easily add or remove administrators.

To change the location of the ACL file, edit the server configuration and set a configuration parameter (see Base server
settings).

The ACL entries are expected in the RFC 2253 format. To get the name of a certificate in the correct format using
openssl, you can use the following OpenSSL command:

$ openssl x509 -in demouser.pem -noout -subject -nameopt RFC2253

5.4.1.3.3 Configuration

By default, the configuration is defined in the file CONF/xuudb_server.conf. To use a different configuration file,
edit the start script, or use --start <config_file> as command line arguments when starting.

The server’s configuration file allows for setting the general XUUDB settings, database backend settings, advanced
HTTP server settings and finally (for secure HTTPS URLs) the server’s truststore and credential. The available prop-
erties are described in the following sections.

For production deployments you should review the listen address and setup correctly truststore and credential. Defaults
for the embedded database configuration and HTTP server settings are usually fine. In case if you plan to use dynamic
mappings, also the dynamic mapping rules need to be provided.

Base server settings

Property name Type Default value / manda-
tory

Description

xuudb.aclFile filesystem
path mandatory File with DNs of servers/clients authorised

to access protected XUUDB services.

xuudb.address string http://localhost:34463 HTTPS or HTTP URL where the server
should listen.

xuudb.db..* string can
have subkeys

Properties with this prefix are used to con-
figure database backend, used by XUUDB.
See separate documentation for details.

xu-
udb.dynamicAttributesConfig

filesystem
path

conf/dynamicAttributesCfg.xmlFile with configuration of the dynamic part
of the XUUDB.

xuudb.protectAll [true, false] false If true then access to both query and mod-
ify operations are protected by ACL. If false
then only modification operations are pro-
tected.

232 Chapter 5. Administrator Documentation

UNICORE Docs

Database settings

The XUUDB can be configured to use different database backends. The embedded H2 database and external MySQL
and PostgreSQL are supported. H2 database (the default) requires no additional configuration actions. In any case
XUUDB will automatically create the required database tables.

For MySQL you have to properly set up the server and create a database. After installing and starting the MySQL server
login to its using MySQL client as administrator and using a commands similar to the below ones, create a database
and assign full access to a xuudb user.

create database xuudb;
grant all on xuudb.* to 'xuudbuser'@'127.0.0.1' identified by 'pass';

For PostgreSQL, the commands to create the DB and the required user would be (similar to):

sudo -u postgres createuser -P unicore
sudo -u postgres createdb -O unicore xuudb

Check that the PostgreSQL server allows for password authentication for the UNICORE user. Ensure that in
pg_hba.conf you have lines similar to these:

host all all 127.0.0.1/32 md5
host all all ::1/128 md5

Of course you are free to choose different names for the user, password and database. If XUUDB server is installed on
other host then the proper address must be set instead of localhost.

Use the following properties to configure database connection from the XUUDB server. In case of external database
pay attention to enter proper values.

Table 5.8: XUUDB Server database configuration
Property name Type Default value / manda-

tory
Description

xuudb.db.charset string utf8 (MySQL) Charset to use for XUUDB tables.
xuudb.db.dialect [h2, mysql,

pgsql]
h2 Database SQL dialect. Must match the se-

lected driver, however sometimes more then
one driver can be available for a dialect.

xuudb.db.driver Class ex-
tending
java.sql.Driver

org.h2.Driver Database driver class name. This property is
optional - if not set, then a default driver for
the chosen database type is used.

xuudb.db.jdbcUrl string jdbc:h2:data/xuudb2 Database JDBC URL.
xuudb.db.password string empty string Database password.
xuudb.db.username string sa Database username.

5.4. XUUDB 233

UNICORE Docs

Configuring advanced HTTP server settings

UNICORE servers are using an embedded Jetty HTTP server. In most cases the default configuration should be per-
fectly fine. However, for some sites (e.g. experiencing an extremely high load) HTTP server settings can be fine-tuned
with the following parameters:

234 Chapter 5. Administrator Documentation

UNICORE Docs

Property name Type Default value
/ mandatory

Description

xu-
udb.httpServer.CORS_allowedHeaders

string * CORS: comma separated list of allowed HTTP headers
(default: any)

xu-
udb.httpServer.CORS_allowedMethods

string GET,PUT,POST,DELETE,HEADCORS: comma separated list of allowed HTTP verbs.

xu-
udb.httpServer.CORS_allowedOrigins

string * CORS: allowed script origins.

xu-
udb.httpServer.CORS_chainPreflight

[true, false] false CORS: whether preflight OPTION requests are chained
(passed on) to the resource or handled via the CORS fil-
ter.

xu-
udb.httpServer.CORS_exposedHeaders

string Location,Content-
Type

CORS: comma separated list of HTTP headers that are
allowed to be exposed to the client.

xu-
udb.httpServer.disabledCipherSuites

string empty string Space separated list of SSL cipher suites to be
disabled. Names of the ciphers must adhere to
the standard Java cipher names, available here:
http://docs.oracle.com/javase/8/docs/technotes/guides/
security/SunProviders.html#SupportedCipherSuites

xu-
udb.httpServer.enableCORS

[true, false] false Control whether Cross-Origin Resource Sharing is en-
abled. Enable to allow e.g. accesing REST services
from client-side JavaScript.

xu-
udb.httpServer.enableHsts

[true, false] false Control whether HTTP strict transport security is en-
abled. It is a good and strongly suggested security mech-
anism for all production sites. At the same time it can
not be used with self-signed or not issued by a generally
trusted CA server certificates, as with HSTS a user can’t
opt in to enter such site.

xu-
udb.httpServer.enableSNI

[true, false] false Enable Server Name Indication (SNI)

xu-
udb.httpServer.fastRandom

[true, false] false Use insecure, but fast pseudo random generator to gener-
ate session ids instead of secure generator for SSL sock-
ets.

xu-
udb.httpServer.gzip.enable

[true, false] false Controls whether to enable compression of HTTP re-
sponses.

xu-
udb.httpServer.gzip.minGzipSize

integer num-
ber

100000 Specifies the minimal size of message that should be
compressed.

xu-
udb.httpServer.maxConnections

integer >= 0 0 Maximum number of incoming connections to this
server. If set to a value larger than 0, incoming connec-
tions will be limited to that number. Default is 0 = un-
limited.

xu-
udb.httpServer.maxIdleTime

integer >= 1 200000 Time (in ms.) before an idle connection will time out.
It should be large enough not to expire connections with
slow clients, values below 30s are getting quite risky.

xu-
udb.httpServer.maxThreads

integer num-
ber

255 Maximum number of threads to have in the thread pool
for processing HTTP connections. Note that this number
will be increased with few additional threads to handle
connectors.

xu-
udb.httpServer.minThreads

integer >= 1 1 Minimum number of threads to have in the thread pool
for processing HTTP connections. Note that this number
will be increased with few additional threads to handle
connectors.

xu-
udb.httpServer.requireClientAuthn

[true, false] true Controls whether the SSL socket requires client-side au-
thentication.

xu-
udb.httpServer.wantClientAuthn

[true, false] true Controls whether the SSL socket accepts (but does not
require) client-side authentication.

xu-
udb.httpServer.xFrameAllowed

string http://localhost URI origin that is allowed to embed web interface in-
side a (i)frame. Meaningful only if the xFrameOptions
is set to ‘allowFrom’. The value should be in the form:
‘http[s]://host[:port]’

xu-
udb.httpServer.xFrameOptions

[deny, same-
Origin,
allowFrom,
allow]

deny Defines whether a clickjacking prevention should be
turned on, by insertionof the X-Frame-Options HTTP
header. The ‘allow’ value disables the feature. See the
RFC 7034 for details. Note that for the ‘allowFrom’ you
should define also the xFrameAllowed option and it is
not fully supported by all the browsers.

5.4. XUUDB 235

http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SupportedCipherSuites
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SupportedCipherSuites

UNICORE Docs

Example

In this example we will turn on compression of all responses bigger then 50kB (assuming that the client supports
decompression). Additionally, we are limiting the number of concurrent clients that can be served to more or less
50, while keeping 10 threads ready all the time to server new clients quicker.

jetty.gzip.enable=true
jetty.gzip.minGzipSize=51200
jetty.maxThreads=50
jetty.minThreads=10

5.4.1.3.4 Configuring PKI trust settings

Public Key Infrastructure (PKI) trust settings are used to validate certificates. This is performed, in the first place when
a connection with a remote peer is initiated over the network, using the SSL (or TLS) protocol. Additionally, certificate
validation can happen in few other situations, e.g. when checking digital signatures of various sensitive pieces of data.

Certificates validation is primarily configured using a set of initially trusted certificates of so called Certificate
Authorities (CAs). Those trusted certificates are also known as trust anchors and their collection is called a trust
store.

Except of trust anchors validation mechanism can use additional input for checking if a certificate being checked was
not revoked and if its subject is in a permitted namespace.

UNICORE allows for different types of trust stores. All of them are configured using a set of properties:

• Keystore trust store - the only format supported in older UNICORE versions. Trusted certificates are stored in
a single binary file in JKS or PKCS12 format. The file can be only manipulated using a special tool like JDK
keytool or openssl (in case of PKCS12 format). This format is great if trust store should be in a single file or
when compatibility with other Java solutions or older UNICORE releases is desired.

• OpenSSL trust store - allows to use a directory with CA certificates stored in PEM format, under precisely defined
names: the CA certificates, CRLs, signing policy files and namespaces files are named <hash>.0, <hash>.r0,
<hash>.signing_policy and <hash>.namespaces. Hash is the old hash of the trusted CA certificate subject
name (in Openssl version > 1.0.0 use -subject_hash_old switch to generate it). If multiple certificates have
the same hash then the default zero number must be increased. This format is the same as used by other then
UNICORE popular middlewares as Globus and gLite. It is suggested when a common trust store with such
middlewares is needed.

• Directory trust store - the most flexible and convenient option, suggested for all remaining cases. It allows to
use a list of wildcard expressions, concrete paths of files or even URLs to remote files as a set of trusted CAs
and in the same way for the CRLs. With this trust store administrator can simply configure all files (or all with a
specified extension) in a directory to be used as a trusted certificates.

In all cases trust stores can be (and by default are) configured to be automatically refreshed.

236 Chapter 5. Administrator Documentation

UNICORE Docs

Property name Type Default value
/ mandatory

Description

xu-
udb.truststore.allowProxy

[ALLOW,
DENY]

ALLOW Controls whether proxy certificates are supported.

xu-
udb.truststore.type

[keystore,
openssl, di-
rectory]

manda-
tory

The truststore type.

xu-
udb.truststore.updateInterval

integer num-
ber

600 How often the truststore should be reloaded, in sec-
onds. Set to negative value to disable refreshing at run-
time.(runtime updateable)

xu-
udb.truststore.directoryConnectionTimeout

integer num-
ber

15 Connection timeout for fetching the remote CA certifi-
cates in seconds.

xu-
udb.truststore.directoryDiskCachePath

filesystem
path

Directory where CA certificates should be cached, after
downloading them from a remote source. Can be left
undefined if no disk cache should be used. Note that
directory should be secured, i.e. normal users should
not be allowed to write to it.

xu-
udb.truststore.directoryEncoding

[PEM, DER] PEM For directory truststore controls whether certificates
are encoded in PEM or DER. Note that the PEM file
can contain arbitrary number of concatenated, PEM-
encoded certificates.

xu-
udb.truststore.directoryLocations.*

list of prop-
erties with
a common
prefix

List of CA certificates locations. Can contain URLs, lo-
cal files and wildcard expressions.(runtime updateable)

xu-
udb.truststore.keystoreFormat

string The keystore type (jks, pkcs12) in case of truststore of
keystore type.

xu-
udb.truststore.keystorePassword

string The password of the keystore type truststore.

xu-
udb.truststore.keystorePath

string The keystore path in case of truststore of keystore type.

xu-
udb.truststore.opensslNewStoreFormat

[true, false] false In case of openssl truststore, specifies whether the trust
store is in openssl 1.0.0+ format (true) or older openssl
0.x format (false)

xu-
udb.truststore.opensslNsMode

[GLOBUS_EUGRIDPMA,
EU-
GRIDPMA_GLOBUS,
GLOBUS,
EU-
GRIDPMA,
GLOBUS_EUGRIDPMA_REQUIRE,
EU-
GRIDPMA_GLOBUS_REQUIRE,
GLOBUS_REQUIRE,
EU-
GRIDPMA_REQUIRE,
EU-
GRIDPMA_AND_GLOBUS,
EU-
GRIDPMA_AND_GLOBUS_REQUIRE,
IGNORE]

EU-
GRIDPMA_GLOBUS

In case of openssl truststore, controls which (and in
which order) namespace checking rules should be ap-
plied. The ‘REQUIRE’ settings will cause that all con-
figured namespace definitions files must be present for
each trusted CA certificate (otherwise checking will
fail). The ‘AND’ settings will cause to check both exist-
ing namespace files. Otherwise the first found is checked
(in the order defined by the property).

xu-
udb.truststore.opensslPath

filesystem
path

/etc/grid-
security/certificates

Directory to be used for opeenssl truststore.

xu-
udb.truststore.crlConnectionTimeout

integer num-
ber

15 Connection timeout for fetching the remote CRLs in sec-
onds (not used for Openssl truststores).

xu-
udb.truststore.crlDiskCachePath

filesystem
path

Directory where CRLs should be cached, after down-
loading them from remote source. Can be left undefined
if no disk cache should be used. Note that directory
should be secured, i.e. normal users should not be al-
lowed to write to it. Not used for Openssl truststores.

xu-
udb.truststore.crlLocations.*

list of prop-
erties with
a common
prefix

List of CRLs locations. Can contain URLs, local files
and wildcard expressions. Not used for Openssl trust-
stores.(runtime updateable)

xu-
udb.truststore.crlMode

[REQUIRE,
IF_VALID,
IGNORE]

IF_VALID General CRL handling mode. The IF_VALID setting
turns on CRL checking only in case the CRL is present.

xu-
udb.truststore.crlUpdateInterval

integer num-
ber

600 How often CRLs should be updated, in seconds. Set to
negative value to disable refreshing at runtime.(runtime
updateable)

xu-
udb.truststore.ocspCacheTtl

integer num-
ber

3600 For how long the OCSP responses should be locally
cached in seconds (this is a maximum value, responses
won’t be cached after expiration)

xu-
udb.truststore.ocspDiskCache

filesystem
path

If this property is defined then OCSP responses will be
cached on disk in the defined folder.

xu-
udb.truststore.ocspLocalResponders.<NUMBER>

list of prop-
erties with
a common
prefix

Optional list of local OCSP responders

xu-
udb.truststore.ocspMode

[REQUIRE,
IF_AVAILABLE,
IGNORE]

IF_AVAILABLE General OCSP ckecking mode. REQUIRE should not
be used unless it is guaranteed that for all certificates an
OCSP responder is defined.

xu-
udb.truststore.ocspTimeout

integer num-
ber

10000 Timeout for OCSP connections in miliseconds.

xu-
udb.truststore.revocationOrder

[CRL_OCSP,
OCSP_CRL]

OCSP_CRL Controls overal revocation sources order

xu-
udb.truststore.revocationUseAll

[true, false] false Controls whether all defined revocation sources should
be always checked, even if the first one already con-
firmed that a checked certificate is not revoked.

5.4. XUUDB 237

UNICORE Docs

Examples

Note: Various UNICORE modules use different property prefixes. Here we don’t put any, but in practice you have
to use the prefix (see the reference table above for the actual prefix). Also properties might need to be provided using
different syntax, as XML.

Directory trust store, with a minimal set of options:

truststore.type=directory
truststore.directoryLocations.1=/trust/dir/*.pem
truststore.crlLocations=/trust/dir/*.crl

Directory trust store, with a complete set of options:

truststore.type=directory
truststore.allowProxy=DENY
truststore.updateInterval=1234
truststore.directoryLocations.1=/trust/dir/*.pem
truststore.directoryLocations.2=http://caserver/ca.pem
truststore.directoryEncoding=PEM
truststore.directoryConnectionTimeout=100
truststore.directoryDiskCachePath=/tmp
truststore.crlLocations.1=/trust/dir/*.crl
truststore.crlLocations.2=http://caserver/crl.pem
truststore.crlUpdateInterval=400
truststore.crlMode=REQUIRE
truststore.crlConnectionTimeout=200
truststore.crlDiskCachePath=/tmp

Openssl trust store:

truststore.type=openssl
truststore.opensslPath=/truststores/openssl
truststore.opensslNsMode=EUGRIDPMA_GLOBUS_REQUIRE
truststore.allowProxy=ALLOW
truststore.updateInterval=1234
truststore.crlMode=IF_VALID

Java keystore used as a trust store:

truststore.type=keystore
truststore.keystorePath=src/test/resources/certs/truststore.jks
truststore.keystoreFormat=JKS
truststore.keystorePassword=xxxxxx

238 Chapter 5. Administrator Documentation

UNICORE Docs

Configuring the credential

UNICORE uses private key and a corresponding certificate (called together as a credential) to identify users and servers.
Credentials might be provided in several formats:

• Credential can be obtained from a keystore file, encoded in JKS or PKCS12 format,

• Credential can be loaded as a pair of PEM files (one with private key and another with certificate),

• or from a pair of DER files,

• or even from a single file, with PEM-encoded certificates and private key (in any order).

The following table list all parameters which allows for configuring the credential. Note that nearly all options are
optional. If not defined, the format is tried to be guessed. However, some credential formats require additional settings.
For instance, if using der format the keyPath is mandatory as you need two DER files: one with certificate and one
with the key (and the latter can not be guessed).

Property name Type Default value
/ mandatory

Description

xu-
udb.credential.path

filesystem
path manda-

tory

Credential location. In case of ‘jks’, ‘pkcs12’ and ‘pem’
store it is the only location required. In case when cre-
dential is provided in two files, it is the certificate file
path.

xu-
udb.credential.format

[jks, pkcs12,
der, pem]

Format of the credential. It is guessed when not given.
Note that ‘pem’ might be either a PEM keystore with
certificates and keys (in PEM format) or a pair of PEM
files (one with certificate and second with private key).

xu-
udb.credential.password

string Password required to load the credential.

xu-
udb.credential.keyPath

string Location of the private key if stored separately from the
main credential (applicable for ‘pem’ and ‘der’ types
only),

xu-
udb.credential.keyPassword

string Private key password, which might be needed only for
‘jks’ or ‘pkcs12’, if key is encrypted with different pass-
word then the main credential password.

xu-
udb.credential.keyAlias

string Keystore alias of the key entry to be used. Can be ig-
nored if the keystore contains only one key entry. Only
applicable for ‘jks’ and ‘pkcs12’.

xu-
udb.credential.reloadOnChange

[true, false] true Monitor credential location and trigger dynamical reload
if file changes.

Examples

Note: Various UNICORE modules use different property prefixes. Here we don’t put any, but in practice you have
to use the prefix (see the reference table above for the actual prefix). Also properties might need to be provided using
different syntax, as XML.

Credential as a pair of DER files:

credential.format=der
credential.password=the\!njs
credential.path=/etc/credentials/cert-1.der
credential.keyPath=/etc/credentials/pk-1.der

5.4. XUUDB 239

UNICORE Docs

Credential as a JKS file (credential type can be autodetected in almost every case):

credential.path=/etc/credentials/server1.jks
credential.password=xxxxxx

5.4.1.3.5 Dynamic mappings configuration

Dynamic mappings are configured with a set of rules. When designing rules it is good to remember that all users,
which will be evaluated, were already successfully authorized.

Each rule has a condition which selects users and a list of mappings which should be applied for the selected users.
Example conditions (in English):

• all members of a /vo.wonderworld.gov

• all (authorized) users

• all users having extra attribute matlabAllowed with any value AND being member of a subgroup of
/vo.wonderworld.gov/dynamic/

Example mappings (in English):

• add user a supplementary group matlab

• assign uid from a pool of existing uids

• assign a fixed gid grid

• invoke an external program and use its standard output as users gid

Precisely speaking, a mapping must have defined:

• what attribute it maps: uid, (primary)gid or supplementaryGids

• using what method: fixed, pool or script

Additionally, one can define an optional parameter stating if the mapping should overwrite an attribute value which
was previously set (either by an earlier rule or assigned using a different attribute source).

As it was mentioned, there are three kinds of mappings. Let’s shortly introduce them one by one.

Fixed mappings

Fixed mappings are the most basic option. The mapping is formed by a simple assignment of a fixed value. It can be
used to:

• assign a common (shared!) uid to selected users (rarely used)

• assign a fixed gid to selected users (very useful to assign a gid to all Grid users, or all members of a VO)

• assign some supplementary gids to selected users (useful to provide additional local permissions to users having
a special role/attributes/etc.)

The example in the pool mappings section contains also a fixed mapping.

240 Chapter 5. Administrator Documentation

UNICORE Docs

Script mappings

Script mappings are the Do It Yourself mechanism. You can provide a command line which will be parsed and invoked.
The application must return (on its standard output) a string with a mapping result (depending on what is mapped -
gid, uid or a space separated list of supplementary gids). Of course the script can be informed who is actually being
mapped, by using parameters enclosed in ${}. The list of available parameters is given below:

• userDN user’s DN

• issuerDN user’s certificate issuer’s DN

• role user’s role

• vo user’s selected VO

• extraAttributes map with extra attributes, names are the keys

• xlogin user’s uid (if already established)

• gid user’s gid (if already established)

• supplementaryGids user’s supplementary gids (if already established)

• xloginSet whether uid was set

• gidSet whether gid was set

• dryRun whether the current invocation is only a simulation, and shouldn’t affect any persisted system settings

The example below contains also a script mapping.

Pool mappings

Finally, the pool mappings are both flexible and relatively easy to use — it is the most advanced mapping type. Using
the pool mapping you have to prepare a set of reserved identifiers (uids or gids depending on what is mapped). The
related system accounts can be precreated or can be created on-demand. The pool mapping is configured with an
additional, very important parameter: pool key. Pool key is a name of one of the user’s attributes: userDN, issuerDN
(DN of CA which issued user’s certificate), role, vo or any other generic user’s attribute.

To explain how the pool works let’s assume that key is set to userDN. Then the pool will map a user as follows: first it
is checked if there is an existing mapping bound to the user’s DN. If it is found then it is simply returned. If not (the
user is trying to use the site for the first time) a new identifier is selected from the pool, and stored under the key being
the user’s DN. Then the new identifier is returned.

Therefore, all users having the same value of the pool key will get the same mapping and vice versa. If DN is the key
then all users will have a distinct mapping (useful for uids or for gids, if every user should get a unique one). If, for
instance, a VO is the key then all VO members will have the same mapping (useful for gid, or for uid if all VO members
should have the same user account).

The following example should help to understand those concepts and is also providing a basic syntax reference:

<?xml version="1.0" encoding="UTF-8"?>
<dynamicAttributes xmlns="http://unicore.eu/xuudb/dynamicAttributesRules"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<rules>
<!-- all members of the vo /vo.wonderworld.gov should have a common uid 'shared_user'-

→˓->
<rule>

(continues on next page)

5.4. XUUDB 241

UNICORE Docs

(continued from previous page)

<condition>vo.matches("/vo.wonderworld.gov/.*")</condition>
<mapping type="fixed" maps="uid">shared_user</mapping>

</rule>

<!-- all users with a role 'admin' should get a primary gid from the 'admins-pool' pool.
For pools the 'maps' parameter is optional - it is better to specify it in the pool␣

→˓definition,
below. -->
<rule>
<condition>role="admin"</condition>
<mapping type="pool">admins-pool</mapping>

</rule>

<!-- all users from the /biology VO get an uid from the pool and a fixed primary gid
→˓'biol' -->
<rule>
<condition>vo.matches("/biology/.*")</condition>
<mapping type="pool">biology-uids-pool</mapping>
<mapping type="fixed" maps="gid">biol</mapping>

</rule>

<!-- complicated condition: all users who have a generic attribute 'matlabAllowed'␣
→˓set AND the value

of this attribute is 'true' get a supplementary group 'matlab' -->
<rule>
<condition>attributes["matlabAllowed"] != null and attributes["matlabAllowed"].

→˓contains("true")</condition>
<mapping type="fixed" maps="supplementaryGids">matlab</mapping>

</rule>

<!-- all (authorized) users, who do not have an uid set (overwriteExisting=false)
should have an uid assigned by a script /usr/local/bin/create-mapping.pl. The␣

→˓script will be called
with two arguments: user's DN and VO.

<rule>
<condition>true</condition>
<mapping type="script" maps="uid" overwriteExisting="false">/usr/local/bin/create-

→˓mapping.pl "${userDN}" "${vo}" </mapping>
</rule>

</rules>

<!-- Here come pools -->
<pools>
<!-- pool 'admins-pool' maps gids. The list of gids provides groups which were
pre-created in the system. The gids will be stored per-user dn, so every admin will␣

→˓get another group.
Finally the list of gids uses special expressions where number ranges are provided.
-->
<pool id="admins-pool" type="gid" key="dn" precreated="true">
<id>admin_grp[1-100]</id>
<id>admin_grp[200-1000]</id>

</pool>
(continues on next page)

242 Chapter 5. Administrator Documentation

UNICORE Docs

(continued from previous page)

<!-- This pool identifiers are loaded from an external file -->
<pool id="biology-uids-pool" type="uid" key="dn" precreated="true">
<file>src/test/resources/externalUidsPool</file>

</pool>
</pools>

</dynamicAttributes>

Usage of pools brings several issues regarding old mappings removal and notifications about pools getting empty. In
the first case it suggested not to remove the users for the time a VO or Grid is supported: it is a simplest approach, and
nowadays operating systems can support thousands of uids without any problem (Linux can have 32bit uid numbers).

In case a site wants to recycle mappings, XUUDB offers the following mechanism:

• Inactive mappings can be automatically (after a configurable time threshold) or manually (using the admin client)
frozen. An identifier belonging to a frozen mapping is still assumed to be occupied, but the mapped user won’t
have it assigned (in the unprobable case that she returns to the site). Freezing is introduced to give a time for
tidying up local resources assigned to the identifier. Such cleaning must be done manually and should include
removal of all owned files and killing any processes. Of course, this depends whether the identifier was a gid or
uid. Also please note that in case of clusters, all nodes should be cleaned up.

• After the clean up is done, the frozen mapping can be removed, again manually using the admin client or auto-
matically, after staying in the frozen state for a specified amount of time. Note that it is impossible to remove an
alive mapping.

If administrator is able to provide scripts which performs cleanup, then it is possible to invoke them upon pool mapping
freezing and automate the whole process. In a similar way other handlers may be configured and XUUDB will invoke
them to notify about mappings removal, assignment of a new mapping (useful when accounts are not pre-created but
should be created on demand) and also when a pool is getting empty.

The following example shows all the possible handlers and lists arguments which are passed to them. As it can be seen
all pool options including handlers, can be configured globally or per-pool.

<?xml version="1.0" encoding="UTF-8"?>
<dynamicAttributes xmlns="http://unicore.eu/xuudb/dynamicAttributesRules"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<!-- how often (in s) pools should be checked for old or inactive mappings -->
<poolMonitoringDelay>300</poolMonitoringDelay>
<defaultConfiguration>

<!-- in seconds: automatic freezeing (time measured from last mapping use)... -->
<automaticFreezeAfter>3600000</automaticFreezeAfter>
<!-- ... and final removal (time measurd from mapping freeze) -->
<automaticDeleteAfter>36000</automaticDeleteAfter>
<!-- when less then this free mappings are left generate a warning -->
<emptyWarningAbsolute>20</emptyWarningAbsolute>
<!-- when less then this percent of free mappings is left generate a warning -->
<emptyWarningPercent>5</emptyWarningPercent>

<!-- timeout for running ALL external programms -->
<handlerInvocationTimeLimit>10000</handlerInvocationTimeLimit>

<!-- Various handlers. Arguments are pool.getId(), pool.getType().toString(),
bean.getEntry(), oldSec+"" -->

<!-- Handler invoked before freezing an account.
Arguments: <poolId> <poolType> <identifier> <inactiveForInSeconds>

(continues on next page)

5.4. XUUDB 243

UNICORE Docs

(continued from previous page)

If handler returns a non-zero exit status then the freezing is skipped
(unless invoked by admin-client).

-->
<handlerAboutToFreeze>/opt/handlers/releaseAccountResources.sh</

→˓handlerAboutToFreeze>

<!-- Handler invoked before deleting a frozen identifier.
Arguments: <poolId> <poolType> <identifier> <frozenForInSeconds>
If handler returns a non-zero exit status then the deletion is skipped
(unless invoked by admin-client).
-->

<handlerAboutToDelete>/opt/handlers/notifyAccountRecycled.sh</
→˓handlerAboutToDelete>

<!-- Handler invoked when an identified from the uids pool is going to be used␣
→˓for the first time

(or for the first time after deleting it), if the pool is set as not pre-created.
Arguments: <poolId> <uid> <key>

-->
<handlerCreateSystemUid>/opt/handlers/adduser.sh</handlerCreateSystemUid>

<!-- Handler invoked when an identified from the gids pool is going to be used␣
→˓for the first time

(or for the first time after deleting it), if the pool is set as not pre-created.
Arguments: <poolId> <gid> <key>

-->
<handlerCreateSystemGid>/opt/handlers/addgroup.sh</handlerCreateSystemGid>

<!-- Handler invoked when a pool warning threshold is exceeded.
Arguments: <poolId> <poolType> <remainingFreeIds>

-->
<handlerPoolGettingEmpty>/opt/handlers/notifyNearlyEmpty.sh</

→˓handlerPoolGettingEmpty>

<!-- Handler invoked when a pool gets empty.
Arguments: <poolId> <poolType>

-->
<handlerPoolEmpty>/opt/handlers/notifyEmpty.sh</handlerPoolEmpty>

</defaultConfiguration>

<rules>
<!-- some rules -->

</rules>

<pools>
<!-- Pool can overwrite any of the global configuration options -->

<pool id="admins-pool" type="gid" key="dn" precreated="true">
<configuration>
<!-- disable automatic freezing for this pool -->

<automaticFreezeAfter>-1</automaticFreezeAfter>
</configuration>
<id>admin_grp[1-100]</id>

(continues on next page)

244 Chapter 5. Administrator Documentation

UNICORE Docs

(continued from previous page)

<id>admin_grp[200-1000]</id>
</pool>

</pools>
</dynamicAttributes>

5.4.1.3.6 Starting the XUUDB server

Start the server with

$ BIN/start.sh

In case if XUUDB was installed with binary package use:

$ /etc/init.d/unicore-xuudb start

5.4.1.3.7 Stopping the server

Stop the server with

$ BIN/stop.sh

This sends a TERM signal to the XUUDB process. Please do not use kill -9 to stop XUUDB, to avoid corrupting
the database.

In case if XUUDB was installed with binary package use:

$ /etc/init.d/unicore-xuudb stop

5.4.1.3.8 Logging

UNICORE uses the Log4j logging framework. It is configured using a config file. By default, this file is found in
components configuration directory and is named logging.properties. The config file is specified with a Java
property log4j.configuration (which is set in startup script).

Several libraries used by UNICORE also use the Java utils logging facility (the output is two-lines per log entry). For
convenience its configuration is also controlled in the same logging.properties file and is directed to the same
destination as the main Log4j output.

Note: You can change the logging configuration at runtime by editing the logging.properties file. The new
configuration will take effect a few seconds after the file has been modified.

By default, log files are written to the LOGS directory.

The following example config file configures logging so that log files are rotated daily:

Set root logger level to INFO and its only appender to A1.
log4j.rootLogger=INFO, A1

A1 is set to be a rolling file appender with default params
(continues on next page)

5.4. XUUDB 245

https://logging.apache.org/log4j/

UNICORE Docs

(continued from previous page)

log4j.appender.A1=org.apache.log4j.DailyRollingFileAppender
log4j.appender.A1.File=logs/uas.log

#configure daily rollover: once per day the uas.log will be copied
#to a file named e.g. uas.log.2008-12-24
log4j.appender.A1.DatePattern='.'yyyy-MM-dd

A1 uses the PatternLayout
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c{1} %x - %m%n

Note: In Log4j, the log rotation frequency is controlled by the DatePattern. Check http://logging.apache.org/log4j/
1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html for the details.

For more info on controlling the logging we refer to the log4j documentation:

• PatternLayout

• RollingFileAppender

• DailyRollingFileAppender

Log4j supports a very wide range of logging options, such as date based or size based file rollover, logging different
things to different files and much more. For full information on Log4j we refer to the publicly available documentation,
for example, the Log4j manual.

Logger categories, names and levels

Logger names are hierarchical. In UNICORE, prefixes are used (e.g. unicore.security) to which the Java
class name is appended. For example, the XUUDB connector in UNICORE/X logs to the unicore.security.
XUUDBAuthoriser logger.

Therefore, the logging output produced can be controlled in a fine-grained manner. Log levels in Log4j are (in increas-
ing level of severity):

• TRACE on this level huge pieces of unprocessed information are dumped

• DEBUG on this level UNICORE logs (hopefully) admin-friendly, verbose information, useful for hunting problems

• INFO standard information, not much output

• WARN warnings are logged when something went wrong (so it should be investigated), but recovery was possible

• ERROR something went wrong and operation probably failed

• FATAL something went really wrong - this is used very rarely for critical situations like server failure

For example, to debug a security problem in the UNICORE security layer, you can set:

log4j.logger.unicore.security=DEBUG

If you are just interested in details of credentials handling, but not everything related to security you can use the
following:

log4j.logger.unicore.security=INFO
log4j.logger.unicore.security.CredentialProperties=DEBUG

246 Chapter 5. Administrator Documentation

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/RollingFileAppender.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html
https://logging.apache.org/log4j/1.2/manual.html

UNICORE Docs

so the XUUDBAuthoriser will log on DEBUG level, while the other security components log on INFO level.

Note: You could turn on the general unicore DEBUG logging for a while (so the full category is printed). Then
interesting events can be seen and subsequently the logging configuration can be fine tuned to only show them.

Several logging categories common in XUUDB:

Log category Description
unicore All of UNICORE
unicore.security Security layer
unicore.client Client calls (to other servers)
unicore.xuudb XUUDB related
unicore.xuudb.server XUUDB server
unicore.xuudb.server.db XUUDB server database layer
unicore.xuudb.client XUUDB admin client

5.4.1.4 The admin client

The admin client is used to edit the XUUDB, using a web service interface. It is configured in the file CONF/
xuudb_client.conf. Client is invoked using the following pattern:

$ ADMIN <command> <options>

You can get detailed usage info by calling the admin script without any options. As it was noted above the actual
utility path is dependent on how XUUDB was installed: it is either /usr/sbin/unicore-xuudb-admin or INST/
bin/admin.sh.

Note: To switch on the confirmation message asked by the add command, edit the admin.sh script, so that the
xuudb.batch property is set to false.

The client configuration requires the URL of the XUUDB server in the property xuudb.address and in case of secure
HTTPS connections also a configuration truststore and credential. The settings are exactly the same as in case of the
XUUDB server, so refer to its documentation Configuring PKI trust settings.

5.4.1.4.1 Configuring advanced HTTP client settings

UNICORE client stack can be configured with several advanced options. In most cases you can skip this section as
defaults are fine.

The following table lists all available options. A special note for the http.* properties: those are passed to the Apache
Commons HTTP Client library. Therefore, it is possible to configure all relevant options of the client. The options are
listed under this address: https://hc.apache.org/httpclient-legacy/preference-api.html. Also see the example below.

5.4. XUUDB 247

https://hc.apache.org/httpclient-legacy/preference-api.html

UNICORE Docs

Property name Type Default value
/ mandatory

Description

xu-
udb.client.digitalSigningEnabled

[true, false] true Controls whether signing of key web service requests
should be performed.

xu-
udb.client.httpAuthnEnabled

[true, false] false Whether HTTP basic authentication should be used.

xu-
udb.client.httpPassword

string empty string Password for use with HTTP basic authentication (if en-
abled).

xu-
udb.client.httpUser

string empty string Username for use with HTTP basic authentication (if en-
abled).

xu-
udb.client.maxWsCallRetries

integer num-
ber

3 Controls how many times the client should try to call a
failing web service. Note that only the transient failure
reasons cause the retry. Note that value of 0 enables un-
limited number of retries, while value of 1 means that
only one call is tried.

xu-
udb.client.messageLogging

[true, false] false Controls whether messages should be logged (at INFO
level).

xu-
udb.client.securitySessions

[true, false] true Controls whether security sessions should be enabled.

xu-
udb.client.serverHostnameChecking

[NONE,
WARN,
FAIL]

WARN Controls whether server’s hostname should be checked
for matching its certificate subject. This verification pre-
vents man-in-the-middle attacks. If enabled WARN will
only print warning in log, FAIL will close the connec-
tion.

xu-
udb.client.sslAuthnEnabled

[true, false] true Controls whether SSL authentication of the client should
be performed.

xu-
udb.client.sslEnabled

[true, false] true Controls whether the SSL/TLS connection mode is en-
abled.

xu-
udb.client.wsCallRetryDelay

integer num-
ber

10000 Amount of milliseconds to wait before retry of a failed
web service call.

xuudb.client.http.allow-
chunking

[true, false] true If set to false, then the client will not use HTTP 1.1 data
chunking.

xuudb.client.http.connection-
close

[true, false] false If set to true then the client will send connection close
header, so the server will close the socket.

xu-
udb.client.http.connection.timeout

integer num-
ber

20000 Timeout for the connection establishing (ms)

xu-
udb.client.http.maxPerRoute

integer num-
ber

6 How many connections per host can be made. Note: this
is a limit for a single client object instance.

xu-
udb.client.http.maxRedirects

integer num-
ber

3 Maximum number of allowed HTTP redirects.

xu-
udb.client.http.maxTotal

integer num-
ber

20 How many connections in total can be made. Note: this
is a limit for a single client object instance.

xu-
udb.client.http.socket.timeout

integer num-
ber

0 Socket timeout (ms)

xu-
udb.client.http.nonProxyHosts

string Space (single) separated list of hosts, for which the
HTTP proxy should not be used.

xu-
udb.client.http.proxy.password

string Relevant only when using HTTP proxy: defines pass-
word for authentication to the proxy.

xu-
udb.client.http.proxy.user

string Relevant only when using HTTP proxy: defines user-
name for authentication to the proxy.

xu-
udb.client.http.proxyHost

string If set then the HTTP proxy will be used, with this host-
name.

xu-
udb.client.http.proxyPort

integer num-
ber

HTTP proxy port. If not defined then system property is
consulted, and as a final fallback 80 is used.

xu-
udb.client.http.proxyType

string HTTP HTTP proxy type: HTTP or SOCKS.248 Chapter 5. Administrator Documentation

UNICORE Docs

Example

Note: Various UNICORE modules use different property prefixes. Here we don’t put any, but in practice you have
to use the prefix (see the reference table above for the actual prefix). Also properties might need to be provided using
different syntax, as XML.

Here we are setting an extremely short connection and socket timeouts for the clients calls, using the Apache HTTP
client parameters. Additionally server hostname to certificate subject name checking is set to cause connections
failures, preventing man in the middle attacks.

client.http.connection.timeout=2000
client.http.socket.timeout=2000
client.serverHostnameChecking=FAIL

5.4.1.4.2 Commands

The help with examples is provided for each command. You can use helpAll to print a reference documentation for
all commands. Selected commands are also described below.

[classic]
add
adddn
check-cert (chc)
check-dn (chdn)
export
import
list
remove
update

[dynamic]
findMapping (fm)
findReverseMapping (fr)
freezeMappings
getDynamicAttributes (getDyn)
listMappings (lm)
listPools (lp)
removeMappings
removePool (rmp)
simulate (sim)

[other]
help
helpAll

Common options:

gcID The so-called grid component ID is used to group entries, and must match the setting in the UNI-
CORE/X configuration file uas.config. For example, if you have two systems with different user
name mappings, you can handle both with a single XUUDB, since you can store two user name

5.4. XUUDB 249

UNICORE Docs

mappings for each certificate, by choosing a different gcID for both systems. When updating xuudb
entries, the special gcid * can be used as wildcard for updating user entries on all systems.

pemfile A file containing a public key in PEM format .

DN The distinguished name of a user.

xlogin xlogins (from UNIX login) are used for incarnation. Grid user’s request which results in invocation
of operations on a target system (usually through BSS) must be mapped to a local UNIX user. This
attribute specifies the XLogins which are valid for the user. The first one is also used as a default
one, if user does not request a particular one. Multiple logins can be specified using a :.

project Defines a primary group UNIX group for a user. If it is undefined then a default group for the
XLogin is used.

role The usual roles in UNICORE are user for a normal user, and admin for an administrator. Custom
roles can be added, and can be assigned permissions in the UNICORE/X security policy file.

5.4.1.4.3 Adding entries using add or adddn

Example using the DN:

$ ADMIN adddn DEMO-SITE "CN=John Doe, O=Test Inc" userlogin user

Example using a pem file:

$ ADMIN add DEMO-SITE /path/to/usercert.pem userlogin user

Note: When extracting the DN from a certificate file using OpenSSL, make sure to use the RFC2253 option, for
example,

$ openssl x509 -in demouser.pem -noout -subject -nameopt RFC2253

5.4.1.4.4 Checking the content

Apart from list, you can use the check-cert and check-dn commands to see what the XUUDB contains for a
certain certificate or DN.

5.4.1.4.5 Removing entries

To remove all entries from xuudb (you will have to confirm this)

$ ADMIN remove ALL

To remove some entries, you have to specify attributes.

To remove a user with cert cert.pem at gcid MYSITE:

$ ADMIN remove gcid=MYSITE pemfile=/path/cert.pem

To remove all users from gcid OLDMACHINE:

250 Chapter 5. Administrator Documentation

UNICORE Docs

$ ADMIN remove gcid=OLDMACHINE

To remove a user with xlogin jdoe from all gcids:

$ ADMIN remove xlogin=jdoe

5.4.1.4.6 Exporting/importing

The export command creates a csv file, which will contain the complete XUUDB database:

$ ADMIN export uudb.csv

If the file already exists, the export tool will complain. To override this, please specify the overwrite option, e.g.

$ ADMIN export uudb.csv overwrite

The import command takes the a csv file (as generated by export) and imports all entries. Already existing entries
will not be changed. To do updates, execute admin.sh remove ALL before, or specify clearDB as a second argument:

$ ADMIN import uudb.csv

5.4.1.4.7 Updating entries

The update command can be used to modify existing entries, for example to replace the certificate or the login. For
example,

$ ADMIN update DEMO-SITE certs/demouser.pem xlogin=jb007

would update the entry identified by the gcID DEMO-SITE and the given pem file, and assign a new xlogin. If you
want to update a user’s entry on all the sites, you would use:

$ ADMIN update * certs/demouser.pem xlogin=jb007

Note: The wildcard * is a special character for the shell and needs to be escaped with a backslash.

5.5 Workflow Service

The Workflow service is a server component that supports submission and execution of application workflows consisting
of UNICORE jobs and control constructs:

• RESTful APIs

• JSON workflow description

• Full range of UNICORE user authentication options and AAI integration

Workflow Service Manual User Manual with detailed instructions and examples for using the Workflow service.

5.5. Workflow Service 251

UNICORE Docs

5.5.1 Workflow Service Manual

The UNICORE Workflow service provides advanced workflow processing capabilities using UNICORE resources.
The Workflow service provides graphs of activities including high-level control constructs (for-each, while, if-then-
else, etc), and submits and manages the execution of single UNICORE jobs.

The Workflow service offers a REST API for workflow submission and management and uses an easy-to-understand
workflow description syntax in JSON format.

Thanks to a flexible internal workflow model and execution engine, the Workflow service can be in principle extended
with custom workflow parsers and custom activities.

The Workflow service supports the full range of authentication options provided by UNICORE and uses JWT tokens
for delegated authentication when submitting jobs to the execution sites.

For more information about UNICORE visit https://www.unicore.eu.

5.5.1.1 Installing and setting up the UNICORE Workflow engine

This chapter covers basic installation of the Workflow engine and the integration of the workflow services into an
existing UNICORE system.

As a general note, the Workflow engine is based on a UNICORE/X instance. General UNICORE configuration concepts
(such as user authentication, gateway integration, shared registry, attribute sources) fully apply, and you should refer to
the UNICORE/X manual for such details.

5.5.1.1.1 Prerequisites

• Java 11 or later

• An existing UNICORE installation with Gateway, Shared Registry and one ore more UNICORE/X execution
systems.

• A server certificate (for production use)

5.5.1.1.2 Updating from previous versions

If you update from 7.x, please note that it is a major update, and we suggest installing from scratch based on the template
config files. The required changes are very similar to the UNICORE/X 7.x to 8.x update.

5.5.1.1.3 Installation

The workflow system is available either as part of the UNICORE Server bundle (tar.gz or zip), or as separate Linux
packages (deb or rpm) on the UNICORE project website at sourceforge.

The basic installation procedure is completely analogous to the installation of a UNICORE/X server.

• If you downloaded the UNICORE server bundle, please untar the tar.gz, review the configure.properties
file and edit the parameters to integrate the workflow services into your existing UNICORE environment. Then
call ./configure.py to apply your settings to the configuration files. Finally use ./install.py to install the
workflow server files to the selected installation directory.

• If using the Linux packages, simply install using the package manager of your system and review the config files.

252 Chapter 5. Administrator Documentation

https://www.unicore.eu
https://sourceforge.net/projects/unicore/files/Servers/Core
https://sourceforge.net/p/unicore/wiki/Linux_Repositories/

UNICORE Docs

5.5.1.1.4 Setup

After installation, there are some manual steps needed to integrate the new server into your UNICORE installation.

• Gateway: edit gateway/conf/connections.properties and add the connection data for the Workflow
server. For example,

WORKFLOW = https://localhost:7700

• XUUDB: if you chose to use an XUUDB for the Workflow server, you might have to add entries to the XUUDB
to allow users access to the workflow engine. Optionally, you can edit the GCID used by the workflow/servorch
servers, so that existing entries in the XUUDB will match.

• Registry: if the registry is setup to use access control (which is the default), you need to allow the Workflow
server to register in the Registry. The exact procedure depends on how you configured your Registry, please refer
to the section Access control in the Registry manual. If you’re using default certificates and the XUUDB, the
required entries can be added as follows:

$ cd xuudb
$ bin/admin.sh add REGISTRY <workflow>/conf/workflow.pem nobody server

5.5.1.1.5 Verifying the installation

Using the UNICORE commandline client, you can check whether the new server is available and accessible:

$ ucc system-info -l

should include output such as

Checking for <Workflow submission> endpoint ...
... OK, found 1 endpoint(s)
* https://localhost:8080/WORKFLOW/rest/workflows
* server v8.0.0 CN=Demo Workflow,O=UNICORE,C=EU
* authenticated as: 'CN=Demo User, O=UNICORE, C=EU' role='user'

The “authenticated as:” line should list you as user.

Some more info about the server can be obtained via

$ ucc rest get https://localhost:8080/WORKFLOW/rest/workflows

Running a test job

Using UCC again, you can submit workflows

$ ucc workflow-submit /path/to/samples/date1.json

and get the ID of your new workflow back, e.g.

https://localhost:8080/WORKFLOW/rest/workflows/86686f72-b732-42e8-b14d-a8bd514e7edf

5.5. Workflow Service 253

UNICORE Docs

5.5.1.1.6 API documentation

Since version 8.0, the Workflow engine exclusively uses a RESTful API for all operations including job submission.

You can find an API reference and usage examples in Workflow description.

5.5.1.2 Configuration of the Workflow server

This chapter covers configuration options for the Workflow server. Since the Workflow server is running in the same
underlying environment (UNICORE Services Environment, USE), a lot of the basic configuration options are docu-
mented in the UNICORE/X manual.

Note: The configuration files in the distribution are commented, and contain example settings for all the options listed
here.

Depending on how you installed the server, the files are located on:

• /etc/unicore/workflow (Linux package)

• <basedir>/workflow/conf (standalone installer)

5.5.1.2.1 Workflow processing

Some details of the workflow engine’s behaviour can be configured. All these settings are made in uas.config.

Limits

To avoid too many tasks submitted (possibly erroneously) from a workflow, various limits can be set:

• workflow.maxActivitiesPerGroup limits the total number of tasks submitted for a single group (i.e. (sub-
)workflow). By default, this limit is 1000, ie. a maximum number of 1000 jobs can be created by a single group.
Note, that it is not possible to limit the total number of jobs for any workflow, it can only be applied to individual
parts of the workflow (such as loops).

• workflow.forEachMaxConcurrentActivities limits the maximum number of tasks in a for-each group that
can be active at the same time (default: 20).

Resubmission

The workflow engine will (in some cases) resubmit failed tasks to the service orchestrator. To completely switch off
the resubmission,

workflow.resubmitDisable=true

To change the maximum number of resubmissions from the default 3,

workflow.resubmitLimit=3

254 Chapter 5. Administrator Documentation

https://github.com/UNICORE-EU/use

UNICORE Docs

Cleanup behaviour

This controls the behaviour when a workflow is removed (automatically or by the user). By default, the workflow engine
will remove all child jobs, but will keep the storage where the files are. This can be controlled using two properties:

• workflow.cleanupStorage remove storage when workflow is destroyed (default: false)

• workflow.cleanupJobs remove jobs when workflow is destroyed (default: true)

5.5.1.2.2 XNJS settings

The workflow engine uses the XNJS library for processing workflows. Some settings for modifying the behaviour are
available, and are usually found in the workflow server’s container.properties file.

An important characteristic is the number of threads used by the workflow engine for processing. Note, this does not
control the number of concurrent activities, etc., since all XNJS processing is asynchronous. The default number (4)
is usually fine.

This properties is set via

XNJS.numberofworkers=4

5.5.1.2.3 Property reference

A complete reference of the properties for configuring the Workflow server is given in the following table:

5.5. Workflow Service 255

UNICORE Docs

Property name Type Default value /
mandatory

Description

work-
flow.additionalSettings

filesystem path Optional file containing additional settings
(e.g. XNJS.* settings) only used for the
workflow service.

work-
flow.cleanupJobs

[true, false] true Whether to remove child jobs when the
workflow is destroyed.

work-
flow.cleanupStorage

[true, false] false Whether to cleanup the workflow storage
when the workflow is destroyed.

work-
flow.fastPollingInterval

integer >= 1 20 Interval in seconds for (slow) polling of job
states.

work-
flow.forEachConcurrentActivities

integer >= 1 100 Default maximum number of concurrent for-
each iterations (user can increase this).

work-
flow.forEachMaxConcurrentActivities

integer >= 1 200 Hard limit on the number of concurrent for-
each iterations.

work-
flow.internalMode

[true, false] false Internal mode: Workflow service only uses
services deployed in the same UNICORE/X
instance.

work-
flow.maxActivitiesPerGroup

integer >= 1 1000 Maximum number of workflow activities
per activity group.

work-
flow.pollingInterval

integer >= 1 600 Interval in seconds for (slow) polling of job
states.

work-
flow.resubmitDisable

[true, false] false Whether to disable automatic re-submission
of failed jobs.

work-
flow.resubmitLimit

integer >= 1 3 Maximum number of re-submissions of
failed jobs.

work-
flow.xnjsConfiguration

string n/a (deprecated)

5.5.1.3 Updating an existing UNICORE Workflow service

This chapter covers the steps required to update an existing workflow installation (version 8.x).

5.5.1.3.1 Stop the server

Stop the workflow server.

256 Chapter 5. Administrator Documentation

UNICORE Docs

5.5.1.3.2 Backup

You should make a backup of your existing data and, if necessary, your config files.

5.5.1.3.3 Update jar files

The Java libraries have to be replaced with the new versions.

5.5.1.3.4 Update config files

Compare the config files from the new version to your existing one. Check the changelog for new features that might
require updates to config files.

5.5.1.3.5 Restart the servers

Restart the workflow server, and check the logs for any suspicious error messages!

5.6 Registry

The Registry server provides information about available services to clients and other services. It is a specially config-
ured UNICORE/X server, so please make sure to read the general UNICORE/X manual as well.

Multiple UNICORE/X sites can share a Registry, greatly simplifying the use of UNICORE services. Since such a
registry is vital to the functioning of a UNICORE-based federation, you can have more than one.

5.6.1 Installation

5.6.1.1 Prerequisites

To run the Registry, you need a Java runtime (headless is enough), in version 11 or later.

UNICORE servers have been most extensively tested on Linux systems, but run on MacOS/X as well.

Please note that

• to integrate into secure production environments, you will need access to a certificate authority and generate
server certificates for all your UNICORE servers.

• to make your UNICORE servers accessible outside of your firewalls, you should setup and configure a UNICORE
Gateway.

5.6. Registry 257

UNICORE Docs

5.6.1.2 A note on paths

The Registry can be installed either from the UNICORE Server bundle (tar.gz or zip archive) or from a Linux package
on the UNICORE project website at sourceforge (i.e. RPM or deb).

Attention: Using the Linux packages, you can install only a single Registry instance per machine (without manual
changes).

The following table gives an overview of the file locations for both tar.gz and Linux packages:

Name in this
manual

tar.gz, zip rpm Description

CONF <basedir>/conf/ /etc/unicore/registry Config files
LIB <basedir>/lib/ /usr/share/unicore/registry/lib Java libraries
LOG <basedir>/log/ /var/log/unicore/registry/ Log files
BIN <basedir>/bin/ /usr/sbin/ Start/stop scripts

5.6.2 Registry configuration

A Registry is running in a normal UNICORE/X container, however, you should use a dedicated UNICORE/X instance
for the Registry, making sure no other services are running.

Thus, most of the UNICORE/X documentation regarding access control, keystores, etc also applies to the Registry.
Please, make sure to read the UNICORE/X documentation as well.

5.6.2.1 Registry configuration (CONF/uas.config)

Apart from hostname, port, and other properties, the uas.config file must contain the following entry:

container.feature.Registry.mode=shared

This setting configures the container to operate as a shared Registry.

5.6.2.2 Starting and stopping

The Registry is started and stopped like any other UNICORE/X container using the scripts in the bin folder.

5.6.2.3 Access control

It is absolutely VITAL that the Registry only contains trusted entries. Therefore the default access control policies
(CONF/xacml2Policies/*.xml) only allow to add entries only for callers with the role server.

You will need to map the certificates / DNs of all servers wishing to publish into the registry as having the role server.
Please check the UNICORE/X documentation on how to do that, using an XUUDB or other attribute source.

258 Chapter 5. Administrator Documentation

https://sourceforge.net/projects/unicore/files/Servers/Core/
https://sourceforge.net/p/unicore/wiki/Linux_Repositories/

UNICORE Docs

5.6.2.4 User / server authentication

While users can read registry content without needing to be authenticated, servers MUST be authenticated and mapped
to role server to be able to write to the Registry.

To accept servers, the REST interface must be configured for X509 authentication.

As an example the following configuration will achieve this:

#
Authentication for the REST interface
#
container.security.rest.authentication.order=X509
container.security.rest.authentication.X509.class=eu.unicore.services.rest.security.
→˓X509Authenticator

For further details we refer also to the UNICORE/X documentation on authentication and REST services.

5.6.2.5 Gateway configuration

If running the Registry behind a Gateway, you’ll need to add an entry to the Gateway’s site list file (connections.
properties) that points to your Registry server. Another option is to use dynamic registration. In the following, we
assume the Registry is named REGISTRY.

5.6.2.6 UNICORE/X configuration

To publish the services in a shared registry, configure the address of the registry in uas.config:

switch on use of external registry
container.externalregistry.use=true

URL
container.externalregistry.url=https://...

optionally you can have more registries
container.externalregistry.url.2=https://...

The entries in the global Registry are updated at a specified interval. To control this interval, edit a property in CONF/
container.properties:

default termination time for registry entries in seconds
container.wsrf.sg.defaulttermtime=1800

5.6.2.7 Client configuration

Clients will require the URL of a Registry. For example, in the UCC preferences file (supply the correct values for your
setup):

registry=https://gwhost:port/REGISTRY/rest/registries/default_registry

5.6. Registry 259

UNICORE Docs

260 Chapter 5. Administrator Documentation

CHAPTER

SIX

GETTING SUPPORT

For getting more information or support, please see the Links and Support page.

6.1 Links

UNICORE on GitHub
UNICORE on SourceForge
UNICORE on YouTube
UNICORE on Twitter

6.2 Support

If you encounter any issues with the software, please consider opening a ticket on the general issue tracker https:
//sourceforge.net/p/unicore/issues.

In case you have direct questions related to the UNICORE software, please use the UNICORE support mailing lists at
https://sourceforge.net/p/unicore/mailman.

Please note also the following places for getting more information:

Project Website https://www.unicore.eu

Support list unicore-support@lists.sf.net

Developer’s list unicore-devel@lists.sf.net (needs registration)

Source code https://github.com/UNICORE-EU

261

https://github.com/UNICORE-EU
https://github.com/UNICORE-EU
https://sourceforge.net/projects/unicore/
https://sourceforge.net/projects/unicore/
https://www.youtube.com/channel/UCKgNmuu1kjzUn4Uav-cZONw
https://www.youtube.com/channel/UCKgNmuu1kjzUn4Uav-cZONw
https://twitter.com/UNICORE_EU
https://twitter.com/UNICORE_EU
https://sourceforge.net/p/unicore/issues
https://sourceforge.net/p/unicore/issues
https://sourceforge.net/p/unicore/mailman
https://www.unicore.eu
https://www.unicore.eu
mailto:unicore-support@lists.sf.net
mailto:unicore-support@lists.sf.net
mailto:unicore-devel@lists.sf.net
mailto:unicore-devel@lists.sf.net
https://github.com/UNICORE-EU
https://github.com/UNICORE-EU

UNICORE Docs

262 Chapter 6. Getting Support

CHAPTER

SEVEN

LICENSE

UNICORE software is available as Open Source under the BSD License while the software repository is hosted on
SourceForge and the source code is available on GitHub.

7.1 License

BSD 2-Clause License

Copyright (c) 1997-2023
Forschungszentrum Jülich GmbH, Fujitsu Labs Europe, ICM Warsaw,
Intel Corporation, CINECA, University of Manchester, T-Systems,
and other contributors to UNICORE: https://www.unicore.eu

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

263

https://sourceforge.net/projects/unicore/
https://github.com/UNICORE-EU

	Overview
	UNICORE Features
	Services and APIs
	Security
	Clients
	Add-ons

	Getting started
	Using UNICORE
	Evaluating UNICORE
	Deploying UNICORE

	How to setup UNICORE for a single HPC cluster
	Overview
	Prerequisites
	Installing the TSI
	Preparations
	Download and install the Slurm TSI

	Installing the UNICORE Gateway and UNICORE/X
	Preparations
	Download and extract the UNICORE Server bundle
	Installing UNICORE Gateway and UNICORE/X
	Starting the Gateway

	UNICORE/X configuration
	Connecting UNICORE/X and TSI
	Starting UNICORE/X
	User authentication
	User account mapping
	Setting up batch queues

	Testing
	Authentication and user mapping
	Batch queue setup
	Test job
	Further testing

	Server certificate
	Generating the self-signed certificate
	Gateway config
	UNICORE/X config

	Getting support

	User Documentation
	Introduction
	Why use UNICORE?
	What client should you use?
	Use case: job execution
	Executing commands via UNICORE
	Running batch jobs
	Advanced batch jobs

	UNICORE Commandline Client
	UCC Manual
	Overview
	Installation and configuration
	Prerequisites
	Download
	Installation and configuration
	Preferences file
	Logging
	Installing UCC extensions
	Testing the installation

	Getting started with UCC
	Getting help
	Connecting
	List available sites
	Running your first job
	Listing your jobs

	Common options to UCC
	User preferences
	Configuration file
	Username and password authentication
	Support for token based authentication
	OIDC-Agent
	OIDC Server
	Bearer token in config

	Certificate-based authentication
	Truststore options
	Truststore examples
	Client options
	Other options

	Running jobs
	Introduction
	Controlling the output location and file names
	Specifying the site
	Accessing a job’s working directory

	Options overview
	Resource selection
	Processing jobs asynchronously
	Asynchronous submission
	Get the status of particular jobs
	Download results
	Referencing a job by its URL (endpoint address)
	Scheduling job submission to the batch system

	Executing a command

	Job description format
	UCC extensions to the UNICORE job description format
	Importing local files into the job workspace
	Exporting result files from the job workspace

	Data management functions
	Specifying remote locations
	Data movement
	cp
	copy-file-status
	Specifying the file transfer protocol

	General commands
	mkdir
	rm
	rename
	stat

	Finding data
	ls

	Using the StorageFactory service

	Metadata management functions
	Basics
	Available commands
	Creating metadata
	Reading metadata
	Updating metadata
	Deleting metadata
	Searching
	Triggering metadata extraction

	Workflows
	Introduction
	Command overview
	Basic use
	Workflow description format
	Managing workflow data
	Importing local data for use by a workflow
	Workflow templates

	Resuming a held workflow

	Batch processing
	Options
	Performance tuning options
	Resource selection in batch mode

	The UCC shell
	Changing property settings
	Running an external command
	Exiting the shell

	Sharing resources
	Editing ACLs
	Permission levels

	Port forwarding / tunneling
	Example
	Final notes

	UCC for site administrators
	Security considerations
	Admin commands
	Disabling/enabling job submission
	Getting job details

	Listing jobs, sites, …
	Low-level operations

	Scripting
	Script context
	Examples

	Frequently asked questions
	Configuration
	Usage

	Building the UCC
	Prerequisites
	Building Java code
	Creating distribution packages
	tgz
	deb
	rpm redhat

	REST API
	Basics
	Base URL
	User preferences
	Security session handling

	General API features
	Media types
	Error handling
	Paging mechanism, using tags and controlling the output
	Modifying resource properties

	REST resources for jobs and data management
	Synopsis
	API Summary
	Site factories
	Synopsis
	API Summary
	Site properties

	Sites
	Synopsis
	Creating a site
	Site properties
	Listing jobs
	API Summary

	Storages and files
	Synopsis
	Listing storages
	Data upload and download
	Creating directories
	Copying and renaming data to the same storage
	Copying data to another server
	Files and metadata
	Searching the metadata index
	Triggering the automated metadata extraction

	API Summary

	Storage factories
	Synopsis
	Creating storages
	API Summary

	Jobs
	Synopsis
	Job description format
	Data management
	Starting, aborting or restarting jobs
	API Summary
	Job properties

	Transfers
	Synopsis
	API Summary

	Workflow
	Synopsis
	API Summary
	Workflow submission
	Workflow description format
	Workflow properties
	Hold and resume

	Utility endpoints
	Getting the server certificate
	Creating a token

	Examples and HowTos
	Rest API Examples
	Basic job submission
	Storages and data management
	Workflow submission and management
	Job submission and management
	Storages and data management
	Workflow submission and management

	Job description format
	Overview
	Job elements
	Job types
	Specifying the executable or application
	Arguments and Environment settings
	Argument sweeps
	Application parameters
	Parameter sweeps
	Pre- and postprocessing

	Job data management
	Jobs without client-controlled stage in
	Importing files into the job workspace
	Using inline data to import a file into the job workspace
	Staging in from git
	Sweeping over a stage-in file

	Exporting result files from the job workspace
	Specifying credentials for data staging

	Redirecting standard input
	Resources
	Specifying resources
	Specifying an accounting project

	Miscellaneous options
	Umask
	Job tags
	Specifying a URL for receiving notifications
	Advanced notification settings (UNICORE 9.2.0 and later)
	Specifying the job name
	Specifying the user email for batch system notifications

	Workflow description
	Introduction
	Overview and simple constructs
	Activities
	Subworkflows
	Job activities
	Data handling
	Transitions and conditions
	Using workflow variables
	Loop constructs
	While and repeat-until loops
	For-each loop
	The values element
	The variables element
	The file_sets element
	Indirection
	Chunking

	Examples
	Simple two-step workflow with data dependency
	Simple diamond graph
	Conditional execution in an if-else construct
	While loop example using workflow variables
	For-each loop example

	Data-triggered processing
	What is data-triggered processing?
	Setting up data-triggered processing
	Controlling the scanning process
	Rules
	Variables
	Job action
	Batched job action
	Metadata extraction
	Sending notifications

	Logging

	Stopping the processing
	Example

	Administrator Documentation
	Gateway
	Gateway Manual
	Installation
	Prerequisites
	Installation from the Server bundle
	Installation from a Linux package (rpm or deb)

	Upgrading
	Configuration
	Java and environment settings: startup.properties
	Configuring sites: connections.properties
	Main server settings: gateway.properties
	Credential and truststore settings
	Scalability settings
	Dynamic registration of Vsites
	Web interface (monkey page)
	Main options reference
	HTTP server settings

	Require end-user certificates
	Logging

	Using Apache httpd as a frontend
	Requirements
	External references

	Using the Gateway for failover and/or loadbalancing of UNICORE sites
	Configuration
	Available strategies
	Primary with fallback
	Round robin
	Custom strategy

	Gateway failover and migration
	Gateway’s migration
	Failover and loadbalancing of the Gateway

	UNICORE/X
	UNICORE/X Manual
	Getting started
	Prerequisites
	Installation
	Starting/Stopping
	Log files

	Configuration of UNICORE/X
	Overview of the main configuration options
	Mandatory configuration

	Config file overview
	Settings for the UNICORE/X process (e.g. memory)
	Config file formats
	Java properties
	XML

	UNICORE/X container configuration overview
	Integration of UNICORE/X with other parts of a UNICORE infrastructure
	Gateway
	Registry
	Unity

	Security
	Overview
	General security options
	Credential and truststore settings

	Configuring the execution backend (XNJS and TSI)
	Configuring storage services
	HTTP proxy, timeout and web server settings
	Features provided by UNICORE/X
	JobManagement
	StorageAccess
	Workflow
	Base
	Admin

	Registry
	Administration
	Controlling UNICORE/X memory usage
	Logging
	Logger categories, names and levels
	Usage logging

	Administration and monitoring
	Commandline client (UCC)
	Examples
	The Admin web service

	Migration of a UNICORE/X server to another physical host

	Security concepts in UNICORE/X
	Security concepts
	Identity
	Security tokens
	Resource ownership
	Trust delegation
	Attributes
	Policy checks
	Authorisation
	Security sessions

	Authentication
	Introduction
	Username-password file
	Unity authentication using OAuth Bearer token
	Unity authentication using username/password
	OAuth token authentication with an OIDC server
	X.509 certificate
	PAM
	Customizing JWT Delegation

	Attribute sources
	UNICORE incarnation and authorization attributes
	Configuring Attribute Sources
	Available attribute sources
	XUUDB
	SAML Virtual Organizations aware attribute source (e.g. Unity)
	File attribute source
	PAM
	Chained attribute source

	Virtual Organisations (VO) Support
	Overview
	Features
	VO selection
	Supported VO (SAML) servers
	VO deployment planning

	Configuration
	Main SAML (VO) configuration file
	Example mapping for Unity attributes
	Logging configuration

	VO (SAML) configuration HOWTOs
	SAML and UNICORE - basic case
	(Very) advanced example: Unity and UNICORE - using fine grained authorization

	The UNICORE persistence layer
	Configuring the persistence layer
	Caching
	The H2 engine
	Connection URL
	The MySQL Engine
	The PostgreSQL engine

	Interfacing UNICORE/X to the TSI
	The UNICORE TSI
	Installation of the correct TSI
	Required TSI Configuration
	UNICORE/X configuration
	Communication parameters
	Tuning the batch system settings
	Enabling SSL for the UNICORE/X to TSI communication
	Using an SSH tunnel for the UNICORE/X to TSI communication
	TSI configuration parameter reference

	Operation without a UNICORE TSI

	The IDB
	Defining the IDB location
	Using an IDB directory
	User-specific applications (IDB extensions)
	Examples for IDB setup

	IDB syntax description
	Partitions
	Resources
	Support for array jobs
	Other types of resources
	Script templates
	Info
	Summary

	IDB Application definitions
	Basic Application definition
	Arguments
	Conditional Arguments
	Environment variables
	Pre and post-commands
	Prologue and epilogue
	Interactive execution when using a batch system
	Exit code handing

	Application argument metadata
	Per-application resource requirements

	Data staging
	SCP support
	Site setup
	SCP wrapper script

	GridFTP
	Configuration reference

	UFTP setup
	Configuring multiple UFTPD servers

	Configuration of storages
	Configuring storage services
	Configuring storages attached to TargetSystem instances
	Controlling target system’s storage resources

	Configuring the StorageFactory service
	Configuring the job working directory storage services

	The UNICORE metadata service
	Configuring metadata support
	Controlling metadata extraction
	Examples

	Data-triggered processing
	Authorization back-end (PDP) guide
	Basic configuration
	Available PDP modules
	XACML 2.0 PDP
	Remote SAML/XACML 2.0 PDP with Argus PAP

	Guide to XACML security policies
	Policy sets and combining of results
	Role-based access to services
	Limiting access to services to the service instance owner
	More details on XACML use in UNICORE/X

	UNICORE/X Update

	TSI
	TSI Manual
	Prerequisites
	Installation
	Batch system specific distribution
	Generic distribution
	File permissions

	Configuring the TSI
	Verifying
	TSI networking configuration
	UNICORE/X configuration
	Hostnames and ports
	SSL support

	ACL support
	ACL limitations

	Enabling SSL for the UNICORE/X - TSI communication

	Adapting the TSI to your system
	Environment and paths
	Assigning groups to the current user
	Batch system integration: BSS.py
	Reporting free disk space
	Reporting computing time budget
	Filtering cluster working nodes
	Resource reservation

	Execution model
	PAM, systemd and user slices
	Directories used by the TSI
	Running the TSI
	Starting
	Stopping the TSI
	TSI logging

	Porting the TSI to other batch systems
	Securing and hardening the system

	TSI API
	Initialisation
	Messages to the UNICORE/X server
	User identity and environment setting
	Method dispatch
	Job execution and job control functions
	Job submission (#TSI_SUBMIT)
	Input
	Output
	Raw job submission
	Resource allocation job

	Script execution (#TSI_EXECUTESCRIPT)
	Input
	Output

	Job control
	Input
	Output

	Detailed job info (#TSI_GETJOBDETAILS)
	Input
	Output

	Status listing (#TSI_QSTAT)
	Input
	Output

	Getting the user’s remaining compute budget (#TSI_GET_COMPUTE_BUDGET)
	Input
	Output
	Format

	I/O functions
	Reading a file (#TSI_GETFILECHUNK)
	Input
	Output

	Writing files (#TSI_PUTFILECHUNK)
	Input
	Output

	File ACL operations (#TSI_FILE_ACL)
	Listing directories and getting file information (#TSI_LS)
	Input
	Output

	Getting free disk space (#TSI_DF)
	Input
	Output

	Resource reservation functions
	Creating a reservation (#TSI_MAKE_RESERVATION)
	Input
	Output
	Querying a reservation (#TSI_QUERY_RESERVATION)
	Input
	Output

	Cancelling a reservation (#TSI_CANCEL_RESERVATION)
	Input
	Output

	Miscellaneous functions
	Getting TSI version information (#TSI_PING)
	Input
	Output

	Getting user information (#TSI_GET_USER_INFO)
	Input
	Output
	Format

	Building the TSI
	Packaging
	Generic binary TGZ

	XUUDB
	XUUDB Manual
	Overview
	The classic mapping
	The dynamic mapping

	Installation
	Installation from Core Server Bundle
	Installation from RPM or DEB packages

	The XUUDB server
	Security
	Administrative access
	Configuration
	Base server settings
	Database settings
	Configuring advanced HTTP server settings

	Configuring PKI trust settings
	Configuring the credential

	Dynamic mappings configuration
	Fixed mappings
	Script mappings
	Pool mappings

	Starting the XUUDB server
	Stopping the server
	Logging
	Logger categories, names and levels

	The admin client
	Configuring advanced HTTP client settings
	Commands
	Adding entries using add or adddn
	Checking the content
	Removing entries
	Exporting/importing
	Updating entries

	Workflow Service
	Workflow Service Manual
	Installing and setting up the UNICORE Workflow engine
	Prerequisites
	Updating from previous versions
	Installation
	Setup
	Verifying the installation
	Running a test job

	API documentation

	Configuration of the Workflow server
	Workflow processing
	Limits
	Resubmission
	Cleanup behaviour

	XNJS settings
	Property reference

	Updating an existing UNICORE Workflow service
	Stop the server
	Backup
	Update jar files
	Update config files
	Restart the servers

	Registry
	Installation
	Prerequisites
	A note on paths

	Registry configuration
	Registry configuration (CONF/uas.config)
	Starting and stopping
	Access control
	User / server authentication
	Gateway configuration
	UNICORE/X configuration
	Client configuration

	Getting Support
	Links
	Support

	License
	License

