

Welcome to UNICORE Documentation

UNICORE [https://www.unicore.eu] (UNiform Interface to COmputing
REsources) offers a ready-to-run system including client and server software.
It makes distributed computing and data resources available in a seamless and secure way
in intranets and the internet.

[image: Federating HPC with UNICORE]

Fig. 1 Federating HPC with UNICORE

	
	[image: overview-img] Overview
	gives an overview of the UNICORE features and the UNICORE architecture.

	
	[image: start-img] Getting started
	shows how to get going quickly.

	
	[image: user-guide-img] How to setup UNICORE for a single HPC cluster
	covers the steps required to install a minimal set of UNICORE services
for a single HPC cluster that is running Slurm.

User Documentation

	
	[image: info-img] Introduction
	Introduction for UNICORE users.

	
	[image: usage-img] UNICORE Commandline Client
	A full featured commandline client for UNICORE.

	
	[image: api-img] REST API
	REST-API for the UNICORE/X server (job submission and management,
data access and data transfer) and the Workflow server (workflow submission
and management).

	
	[image: job-desc-img] Job description format
	The job description format that allows you to specify the application or executable you want
to run, arguments and environment settings, any files to stage in from remote servers and any
result files to stage out.

	
	[image: workflow-img] Workflow description
	The workflow description language that is supported by the Workflow engine.

	
	[image: data-triggered-img] Data-triggered processing
	Reference for the data-triggered processing in UNICORE/X.

Administrator Documentation

	
	Gateway
	An optional server component that
provides a reverse https proxy, allowing you to run several backend
servers (UNICORE/X, Registery, …) behind a single address.

	
	UNICORE/X
	The central server component of a typical UNICORE installation
that provides REST APIs for job management and data access services for a
single compute cluster (or just a file system).

	
	TSI
	The Target System Interface (TSI) server is used to
interface to a resource manager such as Slurm and to access files
on the cluster.

	
	XUUDB
	An optional service, that is best
suited as a per-site service, providing attributes for multiple
UNICORE/X-like services at a site. The XUUDB maps a UNICORE user identity
(which is formally an X.500 distinguished name (DN)) to a set of attributes
which are typically used to provide local account details (uid, gid(s)) and
commonly also to provide authorization information, i.e. the
user’s role.

	
	Workflow Service
	provides advanced workflow processing
capabilities using UNICORE resources. The Workflow service provides
graphs of activities including high-level control constructs
(for-each, while, if-then-else, etc.), and submits and manages the
execution of single UNICORE jobs.

	
	Registry
	The Registry server is a specially configured
UNICORE/X server which provides the information about available
services to clients and other services.

	
	UFTPD [https://uftp-docs.readthedocs.io/en/latest/admin-docs/uftpd/]
	The UNICORE File Transfer Server for high performance data transfer.

[image: UNICORE Components]

Fig. 4 UNICORE Components

[image: support-img] Getting Support

For getting more information or support, please see the Links and Support page.

[image: bsd-img] License

UNICORE software is available as Open Source under the BSD License
while the software repository is hosted on SourceForge [https://sourceforge.net/projects/unicore/]
and the source code is available on GitHub [https://github.com/UNICORE-EU].

[image: overview-img] Overview

UNICORE [https://www.unicore.eu] (UNiform Interface to COmputing
REsources) provides tools and
services for building federated systems, making high-performance
computing and data resources accessible in a seamless and secure way
for a wide variety of applications in intranets and the internet.

[image: UNICORE Architecture]

Fig. 2 UNICORE Architecture

[image: features-img] UNICORE Features

UNICORE provides a comprehensive set of RESTful APIs for HPC access and workflows,
dealing with user authentication, user account mapping and authorization in a highly flexible way.

Services and APIs

	Batch jobs with pre- and post-processing

	Support for common resource managers such as SLURM or LSF

	File system access and file transfer

	Site-to-site file transfer

	Cross-site workflows featuring graphs, loops, conditions, variables, hold/continue, workflow
data management

	Direct access to applications running on HPC (e.g. for steering or visualisation)

	Metadata

	Rule based file processing

	Service Registry

Security

	Flexible user authentication: username/password, OpenID Connect, SSH keys, X.509, …

	Flexible mapping of users to local accounts and groups

	Based on open standards: X.509 Public Key Infrastructure, TLS, SAML, OIDC, XACML, …

Clients

	Commandline client: Job execution, data transfer, workflows, scripting, batch mode, extensible

	Dedicated client for UFTP [https://uftp-docs.readthedocs.io/en/latest/user-docs/uftp-client/]
high performance file transfer and data management features

	pyUNICORE [https://pyunicore.readthedocs.io/] Python client library

Add-ons

	Standalone UFTP suite [https://uftp-docs.readthedocs.io/en/latest] for high-performance data transfer
(can be used independently of UNICORE)

	Unity Identity Management system [https://unity-idm.eu], supports LDAP, OAuth, SAML,
federated AAI and a lot more

[image: start-img] Getting started

Using UNICORE

If you are an end-user or application developer who wishes to use
an existing UNICORE installation, have a look at the user documentation
for the UNICORE Commandline Client, the
PyUNICORE [https://pyunicore.readthedocs.io/] client library
or the REST API documentation.

Evaluating UNICORE

If you wish to experiment with a UNICORE server installation or wish to
quickly evaluate UNICORE’s features, you can try our
UNICORE Docker image [https://github.com/UNICORE-EU/tools/tree/master/unicore-docker-image].

Also, you can download the Core Server Bundle [https://sourceforge.net/projects/unicore/files/Servers/Core/]
which can be installed very quickly on a single test machine or even your laptop.

Deploying UNICORE

Full production deployments of UNICORE range from minimalistic to rather complex, depending
on your requirements, use cases and existing infrastructure.

A few starting points:

	for each target resource (e.g. a compute cluster) you need a TSI and
a UNICORE/X
The TSI is deployed on the cluster login node(s), while UNICORE/X requires a VM or server,
UNICORE/X should NOT be run on a machine where users can log in.

	we strongly recommend running a Gateway, one for all of an
institution/company’s UNICORE services is enough. This will shield the services from direct
external access for added security.

	For the services (except TSI where this is optional), you will need server certificate(s)
from a CA (similar to a web server)

	for multi-site workflows, you will need a Registry
and a Workflow service

You can always contact us for advice in your specific situation.

[image: user-guide] How to setup UNICORE for a single HPC cluster

[image: overview-img] Overview

This How-To covers in detail the steps required to install a minimal set
of UNICORE services for a single HPC cluster that is running Slurm.

The following steps will be described:

	setup the Slurm TSI on a HPC login node

	deploy UNICORE Gateway and UNICORE/X on one VM or physical server

	connect UNICORE/X and TSI

	add test user(s)

	make a Slurm queue accessible via UNICORE

	test the installation via curl

	replace the demo certificate by a more secure self-signed
certificate for Gateway and UNICORE/X

[image: Example deployment of UNICORE for a single cluster]

Fig. 3 Example deployment for a single cluster

[image: checklist-img] Prerequisites

	a server or VM with Java 11 or later and Python3 installed

	port 8080 on this server must be accessible from the Internet if you want to
let external users access your cluster.

In the following, we will refer to this machine as unicore-host.
Adapt the following code examples according to your actual machine name.

	access to the HPC login node(s) with Python3 installed. Since UNICORE requires
a TCP connection from the unicore-host to the login node(s), and another
TCP connection from the login node(s) to the unicore-host, the local firewall
rules might need to be adapted accordingly. Details will be given below.

[image: installer-img] Installing the TSI

The TSI is a server daemon written in Python and is installed on (one or more)
HPC login nodes.

The HPC login node will be named hpc-login in the following.

Preparations

	SSH as root into the login node:

	Add a unicore user and a directory for the UNICORE TSI:

/usr/sbin/groupadd -r unicore
/usr/sbin/useradd -c "UNICORE" -g unicore -s /bin/false -r -d /tmp unicore
mkdir -p /opt/unicore
chown unicore:unicore /opt/unicore

Download and install the Slurm TSI

cd /opt/unicore

wget https://sourceforge.net/projects/unicore/files/Servers/Core/9.3.1/unicore-tsi-9.3.1.tgz -O unicore-tsi-9.3.1.tgz

tar xf unicore-tsi-9.3.1.tgz
rm unicore-tsi-9.3.1.tgz
cd unicore-tsi-9.3.1

./Install.sh slurm /opt/unicore/tsi

chown -R unicore:unicore /opt/unicore/tsi

cd /opt/unicore/tsi/conf

log to file in /opt/unicore/tsi/logs/ instead of syslog
sed -i "s/use_syslog=.*/use_syslog=0/" tsi.properties

configure the hostname of the UNICORE/X machine
sed -i "s/unicorex_machine=.*/unicorex_machine=unicore-host/" tsi.properties

You can start the TSI now and see if there are any errors in the log file:

rm -f /opt/unicore/tsi/logs/*
/opt/unicore/tsi/bin/start.sh
cat /opt/unicore/tsi/logs/TSILog_*

[image: installer-img] Installing the UNICORE Gateway and UNICORE/X

The two Java-based server components will be installed on the host named unicore-host.
We assume that Java 11 or later is installed.

Check that

java --version

works and shows the correct version.

After this step, the UNICORE installation will be accessible at

https://unicore-host:8080/TEST/rest/core.

Preparations

	SSH into unicore-host

	Add a unicore user and a directory for the UNICORE components:

/usr/sbin/groupadd -r unicore
/usr/sbin/useradd -c "UNICORE" -g unicore -s /bin/false -r -d /tmp unicore
mkdir -p /opt/unicore
chown unicore:unicore /opt/unicore

Download and extract the UNICORE Server bundle

cd /opt/unicore

wget https://sourceforge.net/projects/unicore/files/Servers/Core/9.3.1/unicore-servers-9.3.1.tgz -O unicore-servers-9.3.1.tgz

tar xf unicore-servers-9.3.1.tgz
chown -R unicore:unicore unicore-servers-9.3.1
rm unicore-servers-9.3.1.tgz

Installing UNICORE Gateway and UNICORE/X

We will install the Gateway to /opt/unicore/gateway and UNICORE/X to
/opt/unicore/unicorex using the configure.py and install.py scripts.

Here we can already set the TSI host (hpc-login) and configure the Gateway to
listen on all addresses and route requests to UNICORE/X under the TEST alias.

We also tell UNICORE/X what the public hostname of the UNICORE installation
will be (unicore-host) and where the job directories should be created
on the HPC cluster.

cd unicore-servers-9.3.1

TSI is running on 'hpc-login'
sed -i "s/uxTSIHost=.*/uxTSIHost=hpc-login/" configure.properties

Public address is 'unicore-host'
sed -i "s/uxGatewayHost=.*/uxGatewayHost=unicore-host/" configure.properties

sed -i "s/uxName=.*/uxName=TEST/" configure.properties

sed -i 's%uxTSIWorkingDirectoriesBasedir=.*%uxTSIWorkingDirectoriesBasedir=$HOME/UNICORE_Jobs%' configure.properties

sed -i "s/tsi=true/tsi=false/" configure.properties

sed -i "s/gwHost=.*/gwHost=0.0.0.0/" configure.properties

sed -i "s%INSTALL_PATH=currentdir%INSTALL_PATH=/opt/unicore%" configure.properties

setup the configuration files and copy the required files to '/opt/unicore'

sudo -u unicore ./configure.py
sudo -u unicore ./install.py

Starting the Gateway

The Gateway files can now be found in /opt/unicore/gateway and the server
is started like this:

cd /opt/unicore/gateway

sudo -u unicore bin/start.sh

Logs are in /opt/unicore/gateway/logs.

To check for any errors:

cat /opt/unicore/gateway/logs/gateway.log | grep ERROR

The Gateway should now be accessible. A simple test using curl would be:

curl -k -i https://unicore-host:8080

(which will return some HTML)

[image: config-img] UNICORE/X configuration

The UNICORE/X files are now in /opt/unicore/unicorex.

UNICORE/X is the central component in a UNICORE installation, and consequently has quite a
few configuration options.

Here we focus on a very basic setup, and refer to the full manual
for more information.

Connecting UNICORE/X and TSI

This part is configured in the file /opt/unicore/unicorex/conf/tsi.config.

UNICORE/X and TSI communicate via TCP. There are two connections:

	From the UNICORE/X host to the TSI (HPC login node) on port 4433

	From the HPC login node to the UNICORE/X host on port 7654

Make sure your firewall(s) allow both these connections.

Starting UNICORE/X

The UNICORE/X server is started like this:

cd /opt/unicore/unicorex

sudo -u unicore bin/start.sh

Logs are in /opt/unicore/unicorex/logs.

To check for any errors:

cat /opt/unicore/unicorex/logs/startup.log | grep ERROR
cat /opt/unicore/unicorex/logs/unicorex.log | grep ERROR

As a first check via the REST API, you can run

curl -k -H "Accept: application/json" https://unicore-host:8080/TEST/rest/core | python3 -m json.tool

User authentication

To understand the security concepts in UNICORE, please read this section
in the UNICORE/X manual.

In the configuration we have set up so far, UNICORE will authenticate users via username/password, which
are configured in a file

/opt/unicore/unicorex/conf/rest-users.txt

A default user demouser with password test123 is pre-configured, you can add others.

Many other options for authentication exist, and we can only refer to the Authentication section
in the UNICORE/X manual.

User account mapping

In the configuration we have set up so far, users are mapped to HPC accounts in the file

/opt/unicore/unicorex/conf/simpleuudb

Make sure to add account mappings for your users there.

Other options for account mapping exist, we refer to the Attribute sources section
in the UNICORE/X manual.

Setting up batch queues

The available batch system queues are configured in the file

/opt/unicore/unicorex/conf/idb.json

A partition named batch is already in there, make sure to have a look and adapt it to your needs.

For more information, we refer to the IDB syntax section
in the UNICORE/X manual.

[image: testing-img] Testing

Authentication and user mapping

To check that the authentication and user mapping works as intended, you can run the following

export BASE=https://unicore-host:8080/TEST/rest/core

curl -k -u demouser:test123 -H "Accept: application/json" $BASE?fields=client | python3 -m json.tool

where the output will look approximately like this

{
 "client": {
 "role": {
 "selected": "user",
 "availableRoles": [
 "user"
]
 },
 "authenticationMethod": "PASSWORD_FILE",
 "dn": "CN=Demo User, O=UNICORE, C=EU",
 "xlogin": {
 "UID": "demouser",
 "availableGroups": [],
 "availableUIDs": [
 "demouser"
]
 }
 }
}

Batch queue setup

To check the available batch queues,

export BASE=https://unicore-host:8080/TEST/rest/core

curl -k -H "Accept: application/json" $BASE/factories/default_target_system_factory?fields=resources | python3 -m json.tool

which will look similar to this

{
 "resources": {
 "batch": {
 "CPUsPerNode": "1-4",
 "Runtime": "10-86000",
 "MemoryPerNode": "1048576-1073741824",
 "Nodes": "1-16",
 "TotalCPUs": "1-64"
 }
 }
}

Test job

Create a file test1.json with the following content

{
 "Executable": "date"
}

and submit it using

export BASE=https://unicore-host:8080/TEST/rest/core

curl -k -i -u demouser:test123 -H "Content-Type: application/json" --data-ascii @test1.json $BASE/jobs

which should result in something like this

HTTP/1.1 201 Created
Date: Tue, 04 Jul 2023 09:59:38 GMT
X-Frame-Options: DENY
Content-Type: application/json;charset=utf-8
X-UNICORE-SecuritySession: 192ae773-650b-45bf-93fb-5552739f5460
X-UNICORE-SecuritySession-Lifetime: 28799354
Location: https://unicore-host:8080/TEST/rest/core/jobs/78b1a586-3f66-4f5b-bb8d-7fe1d8fe7b87
Transfer-Encoding: chunked

Check the UNICORE/X logs in case of errors. To check whether the job runs properly, check the logs.
You can also access the job via the REST API, the URL to use is given in the Location field above

export JOB=https://unicore-host:8080/TEST/rest/core/jobs/78b1a586-3f66-4f5b-bb8d-7fe1d8fe7b87

curl -k -u demouser:test123 -H "Accept: application/json" $JOB | python3 -m json.tool

Further testing

We recommend downloading the UNICORE commandline client, or using
PyUNICORE [https://pyunicore.readthedocs.io/] for further tests.

[image: certificate-img] Server certificate

Up to now, the so-called demo certificates that come with the download have been used.
While this is OK for testing and setup, it is VERY BAD to expose such a server to the outside world,
since anyone who knows what they are doing can easily get access to your installation.

Ideally you will get an SSL certificate from a CA (Certification Authority) for your machine and
use that. It’s however beyond the scope of this how-to to give a full introduction to SSL certificates.

As an improvement over the demo certificates, we will create a so-called self-signed
certificate and use that, which is secure enough to expose the system to outside users, but is usually
not good enough when integrating UNICORE access with external applications, or integrating your
UNICORE installation into a bigger setup or federation.

Generating the self-signed certificate

The following uses OpenSSL to create a self-signed certificate

cd /opt/unicore/certs

openssl req -x509 -newkey rsa:4096 -sha256 -nodes -days 3650 \
 -keyout server-key.pem \
 -out server-cert.pem \
 -subj "/C=EU/O=Test/CN=unicore-host"

chown unicore:unicore server-*.pem

cat server-cert.pem >> server-key.pem

The file server-key.pem is now suitable as server credential, and the server-cert.pem
will be used as the server truststore. We will use the same key and cert for
both UNICORE/X and Gateway.

Gateway config

We configure our new credential and trusted certificate in the
file /opt/unicore/gateway/conf/gateway.properties:

cd /opt/unicore/gateway/conf

sed -i "s%credential.path=.*%credential.path=/opt/unicore/certs/server-key.pem%" gateway.properties
sed -i "s%credential.password=.*%credential.password=%" gateway.properties

sed -i "s%directoryLocations.1=.*%directoryLocations.1=/opt/unicore/certs/server-cert.pem%" gateway.properties

Restart via:

cd /opt/unicore/gateway
bin/stop.sh
sudo -u unicore bin/start.sh

Check the logs for any errors!

UNICORE/X config

We configure our new credential and trusted certificate in the
file /opt/unicore/unicorex/conf/container.properties:

cd /opt/unicore/unicorex/conf

sed -i "s%credential.path=.*%credential.path=/opt/unicore/certs/server-key.pem%" container.properties
sed -i "s%credential.password=.*%credential.password=%" container.properties

sed -i "s%directoryLocations.1=.*%directoryLocations.1=/opt/unicore/certs/server-cert.pem%" container.properties

Restart via:

cd /opt/unicore/unicorex
bin/stop.sh
sudo -u unicore bin/start.sh

Check the logs for any errors!

[image: support-img] Getting support

You can always contact us for advice in your specific situation.

[image: user-guide] Introduction

This document gives an introduction for new UNICORE users - what can UNICORE do for you?

Why use UNICORE?

The main functionality offered by UNICORE is a secure and flexible programmatic
access to HPC compute and storage.

You can use UNICORE for all those tasks where the “usual” SSH access is not flexible
or not secure enough:

	automation tasks

	multi-step and even multi-site workflows

	hybrid cloud/HPC applications

	integration into third party (web) applications

What client should you use?

For most of the common end-user tasks, like interactive use, scripting,
automation etc, the UNICORE Commandline client will be the
most convenient. It provides a fully-fledged commandline tool.

For integration into third party applications, we provide a Python library
PyUNICORE [https://pyunicore.readthedocs.io/].

If you are not using Python (or Java), you can always directly use the
REST API.

Use case: job execution

Running jobs is the backbones of UNICORE - you can use it as a fancy job submission
and job monitoring tool, or simply as a “replacement” for SSH.

Executing commands via UNICORE

To simply run a command on a login node of the HPC cluster,
you can use the ucc exec command

ucc exec -- whoami

This will run the command and get standard output and error back to the client and display them.

For more complex cases, you can create a JSON job description and run that via UCC.

{
 "Job type": "ON_LOGIN_NODE",
 "Executable": "/bin/bash ./myscript.sh",
 "Imports": [
 {
 "From": "inline://dummy", "To": "myscript.sh",
 "Data": [
 "whoami",
 "hostname",
 "date"
]
 }
]
}

which you can then run via ucc run.

For simplicity, this example puts the script directly in the job via an “inline”
data transfer. There’s a number of other options available to deal with file transfers.

Running batch jobs

The most common use case on a HPC system is the batch job - your job gets submitted to
the cluster’s queueing system (e.g. Slurm), and is executed whenever the required resources
become available.

You as the user need to provide the required resources - which queue,
how long do you need the job to run, how many nodes etc, as well as the command to execute.

For example to run 4 instances of “date” on one node of a cluster, the job would look
like this:

{
 "Executable": "srun -ntasks=4 date",
 "Resources": {
 "Nodes": 1,
 "Runtime": 30
 }
}

Running this job via ucc run will submit and monitor the job, waiting for its completion and
then download the standard output and error files. UCC has many options to modify this behaviour,
and you will often submit the job without waiting for it to finish.

The ucc list-jobs command is used to list all your jobs (that were submitted via UNICORE),
and you can use other ucc commands to interact with the job or download results.

Advanced batch jobs

If you prefer to use a more low level way to allocate resources, you can provide a file
containing resource requests, e.g. for Slurm, and tell UNICORE to use that via special
“Job type” and “BSS file” elements in your job:

{
 "Job type": "RAW",
 "BSS file": "sbatch.request",

 "Executable": "srun -ntasks=4 date",

 "Imports": [
 {
 "From": "inline://dummy", "To": "sbatch.request",
 "Data": [
 "#!/bin/bash",
 "#SBATCH --account=yourproject",
 "#SBATCH --nodes=1",
 "#SBATCH --output=stdout",
 "#SBATCH --error=stderr",
]
 }
]
}

For simplicity, this example contains the script directly in the job description
via an “inline” data transfer.

Note that this only needs to contain resource requests, the actual execution part will be document
by UNICORE. UNICORE will then track this batch job as usual.

[image: usage-img] UNICORE Commandline Client

The UNICORE Commandline Client (UCC) is a client for UNICORE,
supporting all of UNICORE’s features, such as:

	Job submission and management

	Data access and management (upload, download, server-to-server copy, etc) using the UNICORE
storage management functions and the available data transfer protocols

	Storage functions (ls, mkdir, ...) including creation of storage instances
via storage factories

	Workflow execution using UNICORE’s own workflow description

and much more.

	[image: user-guide-img] UCC Manual
	User Manual with detailed instructions and examples for using the UNICORE Commandline Client.

	[image: app-package-img] Building the UCC
	Building the UNICORE Commandline Client distribution packages.

[image: user-guide-img] UCC Manual

Overview

The UNICORE Commandline Client (UCC) is a full-featured client for the
UNICORE middleware. UCC has client commands for all the UNICORE basic
services and the UNICORE workflow system.

It offers the following functions

	Job submission and management

	Batch mode job submission and processing with many performance tuning options

	Data movement (upload, download, server-to-server copy, etc) using the
UNICORE storage management functions and available data transfer protocols

	Storage functions (ls, mkdir, ...) including creation of storage instances via storage factories

	Support for UNICORE workflow submission and management

	Support for the UNICORE metadata system

	Support for sharing UNICORE resources via ACLs

	Information about the available services is provided via the system-info command

	Various utilities like a shell mode, low-level REST API operations and others

	Extensibility through custom commands and the possibility to
run scripts written in the Groovy programming language

	Built-in help

For more information about UNICORE visit https://www.unicore.eu.

[image: config-img] Installation and configuration

Prerequisites

To run UCC, you need a Java runtime version 11 or later (OpenJDK [https://openjdk.org/install/] preferred).

Download

You can get the UCC latest version from SourceForge
UNICORE download page [https://sourceforge.net/projects/unicore/files/Clients/Commandline%20Client].

Installation and configuration

To install, unpack the distribution in a directory of your choice. It’s a good idea
to add the bin/ directory to your PATH variable,

$ export PATH=$PATH:<UCC_HOME>/bin

where UCC_HOME is the directory you installed UCC in.

Note

Windows only

Please do not install UCC into a directory containing spaces such
as Program files.

Also avoid long path names, this can lead to errors due to the Windows
limit on command line length.

Setting environment variables can be done (as administrator)
using the Control panel ‣ System ‣ Extras panel.

Though you can specify many parameters on the commandline, it is
easiest to use a config file, so that you do not have to key in this
information repeatedly.

Preferences file

UCC checks by default whether the file <userhome>/.ucc/preferences exists, and reads it.

A minimal example that specifies username, password and your preferred UNICORE registry URL
would look as follows:

registry=<your registry>

authentication-method=username
username=demouser
password=test123

truststore.type=directory
truststore.directoryLocations.1=<path to CA file(s)>

client.serverHostnameChecking=NONE

Please refer to Common options to UCC for a full description of available options.

Note

If you are worried about security, and do not want specify the password: UCC will ask for it
if it is not given in the preferences or on the commandline.

Note

Windows only

The preferences are usually searched in the c:\Users\<user_name>\.ucc
folder.

To create the .ucc folder, you might have to use the
command prompt mkdir command.

When specifying paths in the preferences file, the backslash \
character needs to be written using an extra backslash \\.

For example, if you are using a local UNICORE installation for
testing, you could use

registry=https://localhost:8080/DEMO-SITE/rest/core/registries/default_registry

Tip

If you wish to change the default property file location, you can
set a Java VM property in the UCC start script, for example by editing the command
that starts UCC

$ java -Ducc.preferences=<preferences location>

Logging

UCC writes some messages to the console, more if you choose the
verbose mode (-v option). If you need real logging (e.g. when using
the batch mode), you can edit the <UCC_HOME>/conf/logging.properties
file, which configures the Log4J [https://logging.apache.org/log4j/2.x/manual/configuration.html] logging
infrastructure used in UNICORE.

Installing UCC extensions

UCC can be extended with additional commands. It is enough
to copy the libraries (.jar files) of the extension into a directory
that is scanned by UCC: in general these are the UCC lib
and the ${HOME}/.ucc/lib directory.

Testing the installation

To test your UCC installation and to get information about the
services available in the UNICORE system you’re connecting to, do

$ ucc system-info -l -v

[image: start-img] Getting started with UCC

Assuming you have successfully installed UCC, this section
shows how to get going quickly.

Getting help

Calling UCC with the -h option will show the available options.
To get a list of available commands, type:

$ ucc -h

To get help on a specific command, type:

$ ucc <command> -h

See also Common options to UCC for a list of common options.

Connecting

First, contact UNICORE and make sure you have access to some target systems:

$ ucc connect

List available sites

Then, list the sites available to you using:

$ ucc list-sites

Running your first job

The UCC distribution contains samples [https://github.com/UNICORE-EU/commandline-client/tree/master/distribution/src/main/samples]
that you can run. Let’s run the date.u [https://github.com/UNICORE-EU/commandline-client/blob/master/distribution/src/main/samples/date.u]
sample. The -v switch prints more info so you can see what’s going on.

$ ucc run -v <UCC_HOME>/samples/date.u

This will run date on a randomly chosen site, and retrieve the output.
To run on a particular site, use the -s option to specify a particular
target system.

Note

Look for UCC samples in the /usr/share/doc/unicore/ucc/samples directory.

Listing your jobs

The command

$ ucc list-jobs -l

will print a list of job URLs with their respective status
(RUNNING, SUCCESSFUL, etc).

[image: options-list-img] Common options to UCC

The following table lists the options understood by most UCC commands. Most
commands have additional options. You can always get a summary of all available
options for a command by calling UCC with the -h or --help option, for example,

$ ucc run --help

Since it is not possible to give all the required options on the commandline,
it is mandatory to create a preferences file containing e.g. your settings for
keystore, registry, etc.

Table 1 Common options for the UCC

	Option (short and long form)

	Description

	-c,–configuration <Properties_file>

	Properties file containing your
preferences. By default, a file
$HOME/.ucc/preferences is
checked.

	-k,–authentication-method <auth>

	Authentication method to use
(default: USERNAME)

	-o,–output <Output_dir>

	Directory for any output produced
(default is the current directory)

	-r,–registry <List_of_Registry_URLs>

	The comma-separated list of URLs of
UNICORE registries

	-v,–verbose

	Verbose mode

	-h,–help

	Print help message

	-y,–with-timing

	Timing mode

User preferences

If you have multiple user IDs or are a member of multiple Unix Groups on the target system,
you may wish to control the user attributes that are used when invoking UCC.

Here is a list of options related to user attributes:

Table 2 User attribute options

	Option (short and long form)

	Description

	-Z, –preference

	Select from your remote attributes
(e.g. xlogin)

The preference option accepts multiple arguments of the form <name>:<value>
where name:

Table 3 User attribute options

	Name

	Description

	uid

	Remote login

	pgid

	Primary group ID

	supgids

	Secondary group IDs (comma-separated)

	role

	UNICORE role (user, admin, …)

	vo

	virtual organisation

Configuration file

By default, UCC checks for the existence of a file <userhome>/.ucc/preferences and reads
settings from there. As shown above, you can use a different file by specifying
it on the commandline using the -c option.

The configuration file can contain default settings for many commandline options,
which are given in the form <option name>=<value> where <option name> is the long
form of the option. The property values may contain variables in the form ${VAR_X},
which are automatically replaced with the environmental variable values with the same name.
Additionally a special variable ${UCC_CONFIG} is recognized and is replaced with the
absolute path of your configuration file.

The most important part of configuration is how UCC should authenticate you to the UNICORE
server(s) and what server(s) should be trusted.

An overview of the available authentication options can be retrieved using:

$ ucc help-auth

A minimal example for using the quickstart installation would be:

registry=https://localhost:8080/DEMO-SITE/services/Registry?res=default_registry

authentication-method=username
username=demouser
password=test123

truststore.type=directory
truststore.directoryLocations.1=<path to CA file(s)>

Important

To protect your passwords, you should make the file non-readable by others,
for example on Unix using a command such as chmod 600 preferences.

Note

If required passwords are not given in the properties file,
they will be queried interactively.

Username and password authentication

To authenticate with username and password, set the following:

authentication-method=username
username=<your remote username>
password=<your remote password>

Support for token based authentication

UCC has three different options for using token-based authentication:

	via oidc-agent

	directly contact an OIDC server as an OIDC client (requires client ID and secret)

	specify the token directly as a config property

OIDC-Agent

UCC supports the oidc-agent [https://github.com/indigo-dc/oidc-agent] tool that
allows to interact with common OIDC servers to retrieve new access tokens.

To configure oidc-agent, UCC supports the following properties:

Table 4 Options for oidc-agent

	Property name

	Type

	Default value / mandatory

	Description

	oidc-agent.account

	string

	
mandatory

	Account short name.

	oidc-agent.lifetime

	integer >= 1

	
	Minimum lifetime of the issued access token.

	oidc-agent.scope

	string

	
	OpenID scope(s) to request.

Your config file would require at least:

authentication-method=oidc-agent
oidc-agent.account=<oidc-agent account to be used>

OIDC Server

This is a low-level approach that requires the details on how to act
as an OIDC client, you’ll need at least an OIDC token endpoint, client
ID and secret.

Table 5 Options for oidc-server

	Property name

	Type

	Default value / mandatory

	Description

	oidc.authentication

	[BASIC, POST]

	BASIC

	How to authenticate (i.e. send client id/secret) to the OIDC server (BASIC or POST).

	oidc.clientID

	string

	
	Client ID for authenticating to the OIDC server.

	oidc.clientSecret

	string

	
	Client secret for authenticating to the OIDC server.

	oidc.endpoint

	string

	
mandatory

	The OIDC server endpoint for requesting a token

	oidc.grantType

	string

	client_credentials

	Grant type to request.

	oidc.otp

	string

	
	Additional one-time password for two-factor authentication. Set this to ‘QUERY’ to query it interactively.

	oidc.password

	string

	
	Password used to log in. It is suggested not to use this option for security reasons. If not given in configuration, it will be asked interactively.

	oidc.refreshInterval

	integer number

	300

	Interval (seconds) before refreshing the token.

	oidc.refreshTokenFile

	string

	
	(internal) Filename for storing the refresh token between UCC invocations.

	oidc.request_key_for_otp

	string

	otp

	(internal) How to send the OTP value to the server.

	oidc.username

	string

	
	Username used to log in. If not given in configuration, it will be asked interactively.

authentication-method=oidc-server
oidc.endpoint=<oidc server token endpoint>
oidc.username=...
oidc.password=...

UCC also supports sending an OTP (one-time password) to Keycloak. To enable, add

oidc.otp=QUERY

to your config. The OTP token is queried from the command-line (the OTP value can also be placed verbatim
in the preferences as oidc.otp=your_otp_value).

UCC stores the refresh token (if any) and tries to use it, before using the username/password
again, also accross UCC invocations. (The token is stored in a file “$HOME/.ucc/refresh-tokens”,
this default can be changed via a config variable)

Bearer token in config

Last not least, if you have a Bearer token via some other means, you
can directly put the token into your config file:

authentication-method=bearer-token
token=...

Certificate-based authentication

For UNICORE installations that support (or even require) client
certficates for authentication, set:

authentication-method=X509

credential.path=<your keystore>
credential.password=XXXXXXX

Truststore options

In most cases you only need a truststore directory containing trusted
certificates:

truststore.type=directory
truststore.directoryLocations.1=/trust/dir/*.pem

A full list of options related to truststore management is available
in the following table:

Table 6 Truststore properties

	Property name

	Type

	Default value / mandatory

	Description

	truststore.allowProxy

	[ALLOW, DENY]

	ALLOW

	Controls whether proxy certificates are supported.

	truststore.type

	[keystore, openssl, directory]

	
mandatory

	The truststore type.

	truststore.updateInterval

	integer number

	600

	How often the truststore should be reloaded, in seconds. Set to negative value to disable refreshing at runtime.(runtime updateable)

	truststore.directoryConnectionTimeout

	integer number

	15

	Connection timeout for fetching the remote CA certificates in seconds.

	truststore.directoryDiskCachePath

	filesystem path

	
	Directory where CA certificates should be cached, after downloading them from a remote source. Can be left undefined if no disk cache should be used. Note that directory should be secured, i.e. normal users should not be allowed to write to it.

	truststore.directoryEncoding

	[PEM, DER]

	PEM

	For directory truststore controls whether certificates are encoded in PEM or DER. Note that the PEM file can contain arbitrary number of concatenated, PEM-encoded certificates.

	truststore.directoryLocations.*

	list of properties with a common prefix

	
	List of CA certificates locations. Can contain URLs, local files and wildcard expressions.(runtime updateable)

	truststore.keystoreFormat

	string

	
	The keystore type (jks, pkcs12) in case of truststore of keystore type.

	truststore.keystorePassword

	string

	
	The password of the keystore type truststore.

	truststore.keystorePath

	string

	
	The keystore path in case of truststore of keystore type.

	truststore.opensslNewStoreFormat

	[true, false]

	false

	In case of openssl truststore, specifies whether the trust store is in openssl 1.0.0+ format (true) or older openssl 0.x format (false)

	truststore.opensslNsMode

	[GLOBUS_EUGRIDPMA, EUGRIDPMA_GLOBUS, GLOBUS, EUGRIDPMA, GLOBUS_EUGRIDPMA_REQUIRE, EUGRIDPMA_GLOBUS_REQUIRE, GLOBUS_REQUIRE, EUGRIDPMA_REQUIRE, EUGRIDPMA_AND_GLOBUS, EUGRIDPMA_AND_GLOBUS_REQUIRE, IGNORE]

	EUGRIDPMA_GLOBUS

	In case of openssl truststore, controls which (and in which order) namespace checking rules should be applied. The ‘REQUIRE’ settings will cause that all configured namespace definitions files must be present for each trusted CA certificate (otherwise checking will fail). The ‘AND’ settings will cause to check both existing namespace files. Otherwise the first found is checked (in the order defined by the property).

	truststore.opensslPath

	filesystem path

	/etc/grid-security/certificates

	Directory to be used for opeenssl truststore.

	truststore.crlConnectionTimeout

	integer number

	15

	Connection timeout for fetching the remote CRLs in seconds (not used for Openssl truststores).

	truststore.crlDiskCachePath

	filesystem path

	
	Directory where CRLs should be cached, after downloading them from remote source. Can be left undefined if no disk cache should be used. Note that directory should be secured, i.e. normal users should not be allowed to write to it. Not used for Openssl truststores.

	truststore.crlLocations.*

	list of properties with a common prefix

	
	List of CRLs locations. Can contain URLs, local files and wildcard expressions. Not used for Openssl truststores.(runtime updateable)

	truststore.crlMode

	[REQUIRE, IF_VALID, IGNORE]

	IF_VALID

	General CRL handling mode. The IF_VALID setting turns on CRL checking only in case the CRL is present.

	truststore.crlUpdateInterval

	integer number

	600

	How often CRLs should be updated, in seconds. Set to negative value to disable refreshing at runtime.(runtime updateable)

	truststore.ocspCacheTtl

	integer number

	3600

	For how long the OCSP responses should be locally cached in seconds (this is a maximum value, responses won’t be cached after expiration)

	truststore.ocspDiskCache

	filesystem path

	
	If this property is defined then OCSP responses will be cached on disk in the defined folder.

	truststore.ocspLocalResponders.<NUMBER>

	list of properties with a common prefix

	
	Optional list of local OCSP responders

	truststore.ocspMode

	[REQUIRE, IF_AVAILABLE, IGNORE]

	IF_AVAILABLE

	General OCSP ckecking mode. REQUIRE should not be used unless it is guaranteed that for all certificates an OCSP responder is defined.

	truststore.ocspTimeout

	integer number

	10000

	Timeout for OCSP connections in miliseconds.

	truststore.revocationOrder

	[CRL_OCSP, OCSP_CRL]

	OCSP_CRL

	Controls overal revocation sources order

	truststore.revocationUseAll

	[true, false]

	false

	Controls whether all defined revocation sources should be always checked, even if the first one already confirmed that a checked certificate is not revoked.

Truststore examples

Here are some examples for commonly used trust store
configurations.

Most commonly used is a directory (with a minimal set of options):

truststore.type=directory
truststore.directoryLocations.1=/trust/dir/*.pem

OpenSSL trust store:

truststore.type=openssl
truststore.opensslPath=/etc/grid-security/
truststore.opensslNsMode=EUGRIDPMA_GLOBUS_REQUIRE
truststore.updateInterval=1200
truststore.crlMode=IF_VALID

Java keystore used as a trust store:

truststore.type=keystore
truststore.keystorePath=/some/dir/truststore.jks
truststore.keystoreFormat=JKS
truststore.keystorePassword=xxxxxx

Client options

The configuration file may also contain low-level options, for example, if you need to
specify connection timeouts, http proxies, etc.

Table 7 Client options

	Property name

	Type

	Default value / mandatory

	Description

	client.digitalSigningEnabled

	[true, false]

	true

	Controls whether signing of key web service requests should be performed.

	client.httpAuthnEnabled

	[true, false]

	false

	Whether HTTP basic authentication should be used.

	client.httpPassword

	string

	empty string

	Password for use with HTTP basic authentication (if enabled).

	client.httpUser

	string

	empty string

	Username for use with HTTP basic authentication (if enabled).

	client.maxWsCallRetries

	integer number

	3

	Controls how many times the client should try to call a failing web service. Note that only the transient failure reasons cause the retry. Note that value of 0 enables unlimited number of retries, while value of 1 means that only one call is tried.

	client.messageLogging

	[true, false]

	false

	Controls whether messages should be logged (at INFO level).

	client.securitySessions

	[true, false]

	true

	Controls whether security sessions should be enabled.

	client.serverHostnameChecking

	[NONE, WARN, FAIL]

	WARN

	Controls whether server’s hostname should be checked for matching its certificate subject. This verification prevents man-in-the-middle attacks. If enabled WARN will only print warning in log, FAIL will close the connection.

	client.sslAuthnEnabled

	[true, false]

	true

	Controls whether SSL authentication of the client should be performed.

	client.sslEnabled

	[true, false]

	true

	Controls whether the SSL/TLS connection mode is enabled.

	client.wsCallRetryDelay

	integer number

	10000

	Amount of milliseconds to wait before retry of a failed web service call.

	client.http.allow-chunking

	[true, false]

	true

	If set to false, then the client will not use HTTP 1.1 data chunking.

	client.http.connection-close

	[true, false]

	false

	If set to true then the client will send connection close header, so the server will close the socket.

	client.http.connection.timeout

	integer number

	20000

	Timeout for the connection establishing (ms)

	client.http.maxPerRoute

	integer number

	6

	How many connections per host can be made. Note: this is a limit for a single client object instance.

	client.http.maxRedirects

	integer number

	3

	Maximum number of allowed HTTP redirects.

	client.http.maxTotal

	integer number

	20

	How many connections in total can be made. Note: this is a limit for a single client object instance.

	client.http.socket.timeout

	integer number

	0

	Socket timeout (ms)

	client.http.nonProxyHosts

	string

	
	Space (single) separated list of hosts, for which the HTTP proxy should not be used.

	client.http.proxy.password

	string

	
	Relevant only when using HTTP proxy: defines password for authentication to the proxy.

	client.http.proxy.user

	string

	
	Relevant only when using HTTP proxy: defines username for authentication to the proxy.

	client.http.proxyHost

	string

	
	If set then the HTTP proxy will be used, with this hostname.

	client.http.proxyPort

	integer number

	
	HTTP proxy port. If not defined then system property is consulted, and as a final fallback 80 is used.

	client.http.proxyType

	string

	HTTP

	HTTP proxy type: HTTP or SOCKS.

Other options

The following table lists other options, that are more rarely used:

Table 8 Other options for the UCC

	Property name

	Description

	blacklist

	Comma separated patterns for sites
/ URLs to ignore

	contact-registry

	Do not attempt to contact the
registry, even if one is configured

[image: run-jobs-img] Running jobs

Introduction

The UCC can run jobs specified in the JSON job description format that
is used by the UNICORE REST API, plus a few extensions related to
handling of local files, submission options, etc. See
 Job description format for all the details.

In the following it is assumed that you have UCC installed
 Installation and configuration and tried some examples Getting started with UCC.

For example, assume the file myjob.u looks as follows:

{
 "ApplicationName": "Date",
 "ApplicationVersion": "1.0"
}

To run this through UCC, issue the following command:

$ ucc run myjob.u

This will submit the job, wait for completion, download the stdout and
stderr files, and place them in your default output directory. The run
command has a number of options, to see all the possibilities use the
built-in help:

$ ucc run -h

Controlling the output location and file names

Output files will be placed in the directory given by the -o option, if not given, the current
directory is used. Also, file names will be put into a subdirectory named as the job id,
to prevent accidental overwriting of existing files. This behaviour can be changed using the
-b option. When -b is given on the command line, no subdirectory will be created.

Specifying the site

In the example above, a random site will be chosen to execute the
job. To control it, you can use the -s option. This will accept the
name of a target system. The target systems available to you can be
listed by

$ ucc list-sites

Accessing a job’s working directory

Using the UCC’s data management functions, the job working directory
can be accessed at any time after job submission. Please see section
 Data management functions for details.

Options overview

The following options are available when running jobs (see also the general options overview
in Common options to UCC):

Table 9 Job submission options for UCC

	Option (Short and long form)

	Description

	-a,–asynchronous

	Run asynchronously

	-b,–brief

	Do not create a sub-directory for output files

	-B,–broker

	Select the type of resource broker to use (see run -h for
a list)

	-s,–sitename <SITE>

	Site where the job shall be run

	-S,–schedule <Time>

	Schedule the submission of the job at the given time

	-o,–output <Output_dir>

	Directory for any output produced (default is the current directory)

Resource selection

In general the user selects the execution site.

If no site is specified upon submission, UCC will select a matching site, where
the requirements (resources, applications) are met.

In case there are other types of brokers available, they can be
selected using the -B or --broker option.

	LOCAL (default): brokering is done by UCC itself

To see if other brokers exist, execute ucc run -h, the available
options will be listed in the help for the -B option.

Processing jobs asynchronously

In case of long-running jobs, you will want to run the job
asynchronously, i.e. just submit the job, stage in any files and start
it, in order to get the results later.

Asynchronous submission

Use the -a flag when submitting a job:

$ ucc run -a <job file>

This will submit the job, stage-in any local files, start the job and exit.
A job file will be written that contains information about the job endpoint
and any exports that should be performed once the job has finished.
You can use this file later with the get-output and job-status commands.

Get the status of particular jobs

The command

$ ucc job-status <job_file_or_url> <job_file_or_url_2> ...

will retrieve the status of the given jobs. If not given on the command line, a
job URL will be read from the console.

The arguments can be either a job URL, or the name of a job file (as
written by the run -a command).

Download results

To get stdout and stderr as well as other files marked for export, do:

$ ucc get-output -o <outdir> <job_file_or_url> <job_file_or_url_2> ...

Here, the option -o specifies the directory where to put the output,
by default the current directory is used. As before, a job address
can also be read from the console.

Referencing a job by its URL (endpoint address)

In case you want to check on a job not submitted through UCC, you can
refer to a job by its URL. The list-jobs command will produce a
list of all job URLs that you can access.

Note that in this case UCC will only retrieve stdout and stderr files. To download
other result files, you’ll have to use the data movement functions described
in Data management functions.

Scheduling job submission to the batch system

Sometimes a user wishes to control the time when a job is
submitted to the batch queue, for example, because he/she knows that
a certain queue will be empty at that time.

To schedule a job, you can either use the -S option to the ucc run
command:

$ ucc run -S "12:24" ...

Alternatively, you can specify the start time in your job file using the Not before keyword:

{
 "Not before": "12:30",
}

In both cases, the specified start time can be given in the brief “HH:mm” (hours and minutes)
format shown above, or in the full ISO 8601 format including year, date, time and time zone:

{
 "Not before": "2011-12-24T12:30:00+0200",
}

Executing a command

If you just want to execute a simple command remotely (i.e. without data staging,
resource specifications etc), you can use the exec command.

This will run the given command remotely (similarly to ssh), and print the
output to the console. You can specify the site with the -s option.
If you do not specify the site, a random site will be chosen.

UNICORE will run the command on the login node, it will not be submitted to the
batch system.

For example, try

$ ucc exec /bin/date

To safely pass arguments to the executable, use “–” to end the UCC part of
the command line, for example

$ ucc exec -- date --rfc-email

[image: job-desc-img] Job description format

UCC uses the JSON Job description format that is used by the UNICORE REST API, adding support for handling local files.

Several complete job samples can be found in the samples [https://github.com/UNICORE-EU/commandline-client/tree/master/distribution/src/main/samples]
directory of the distribution.
On Linux, check also the /usr/share/unicore/ucc/samples directory.

To view an example job showing most of the available options, run:

$ ucc run -H

(most of the options shown are not mandatory, of course).

UCC extensions to the UNICORE job description format

It is often the case that your job requires files from your
local workstation, or you want UCC to download result files once
the job has finished.

UCC achieves this by allowing paths to local files in the To and/or From
directives of the data staging part(s) in your job.

Local files can be given as an absolute or relative path; in the
latter case the configured output directory will be used as base
directory.

Importing local files into the job workspace

To import files from your local computer, you can use the usual
Imports keyword, with a path as the From argument.

You can of course mix local and remote files. This example shows
some of the possibilities:

{

 "Imports": [

 #
 # import a local file from the client machine
 # into the job workspace
 #

 { "From": "/work/data/fileName", "To": "fileName" },

 #
 # import a set of local files from the client machine
 # into the job workspace
 #

 { "From": "/work/data/pdf/*.pdf", "To": "/" },

 #
 # import a remote file from a UNICORE storage using the UFTP protocol
 #

 { "From": "UFTP:https://gw:8080/DEMO-SITE/rest/core/storages/Home/files/testfile",
 "To": "testfile" },

 # create a symlink from a file on the compute machine to the job workspace

 { "From": "link:/work/data/testfile", "To": "linked-file" },

 # copy a file on the compute machine to the job workspace

 { "From": "file:/work/data/testfile", "To": "copied-file" },

],

}

If for some reason an import fails, but you want the job to run anyway,
there is a flag FailOnError that can be set to false:

"Imports": [

 { "From": "/work/data/fileName",
 "To": "fileName",
 "FailOnError": "false"
 },

],

Note

UCC supports simple wild cards (* and ?) for importing and exporting files.

Exporting result files from the job workspace

To export files from the job’s working directory to your local machine, use the normal Exports keyword,
with a file path as the To argument. Here is an example Exports section that specifies two exports:

{
 "Exports": [

 # this exports all png files to a local directory

 { "From": "*.png", "To": "/home/me/images/" },

 # this exports a single file to a to local directory
 # failure of this data transfer will be ignored

 { "From": "error.log",
 "To": "/home/me/logs/error.log",
 "FailOnError": "false" },

 # this exports to a UNICORE storage

 { "From": "stdout",
 "To": "https://gw:8080/DEMO-SITE/rest/core/storages/Home/files/results/myjob/stdout"
 },
]
}

As a special case, UCC also supports downloading files from other UNICORE storages
(after the job has finished), using the Exports keyword:

{
 "Exports": [

 # this exports a file from a UNICORE storage

 { "From": "https://gw:8080/DEMO-SITE/rest/core/storages/Work/files/somefile",
 "To": "/home/me/somefile"
 },
]
}

[image: data-img] Data management functions

UCC offers access to all the data management functions in UNICORE.
You can upload or download data from a remote server, initiate
a server-to-server transfer, create directories and so on.

Specifying remote locations

Remote locations are specified via URIs that includes protocol, storage
server (host/port), site name, and filename. For example,

BFT:https://mygateway:8080/SITE/rest/core/storages/HOME/files/my_file

specifies a file named /my_file on the storage instance
https://mygateway:8080/SITE/rest/core/storages/HOME,
using the BFT protocol.

Paths are always relative to the storage root, not the root of
the actual file system.

The protocol is optional, and will default to BFT if not given.

Data movement

cp

The cp command is a generic command for copying source file(s) to a
target destination, where source and target can be remote locations or
files on the local machine. Wild card characters * and ?
are supported.

Examples for client-server transfers:

$ ucc cp data/*.pdf https://server/rest/core/storages/SHARE/files/pdfs
$ ucc cp https://server/rest/core/storages/SHARE/files/pdfs .

The -R option allows to choose whether subdirectories are to be copied too.

The -X option allows to resume a previous transfer. Missing data will be appended to an
existing target file (if the chosen protocol supports it).

Examples for server-server transfer:

$ ucc cp https://server/rest/core/storages/SHARE/files/*.pdf \
 https://otherserver/rest/core/storages/WORK/data/

For server-to-server transfers, the cp command supports several
additional options.

The -S option allows to schedule a transfer for a certain time.
For example,

$ ucc cp -S "23:00" ...

The format is simply HH:mm (hours and minutes). Alternatively, you can give
the time in the full ISO 8601 format including year, date, time
and time zone:

$ ucc cp -S "2011-12-24T12:30:00+0200" ...

Another useful option is -a which will execute the server-server transfer
asynchronously, i.e. the client will not wait for the transfer to finish.

copy-file-status

This will print the status of the given data transfer. As argument, it expects a file name
containing the transfer reference, or directly the reference.

Example (for Unix) which captures the reference into a shell variable:

$ export ID=$(ucc cp -a ...
$ ucc copy-file-status $ID

Specifying the file transfer protocol

To use a different protocol from the default BFT, you can use the -P
option to specify your preferred protocol. UCC will try to match them
with the capabilities of the storage and use the first match. Your
preferred protocol can also be listed in your preferences file using
the protocols key:

protocols=UFTP

Note

If necessary, you can specify additional filetransfer options in your preferences file as well.
For example, to use the UFTP protocol you may need to specify the client host address
and the number of parallel streams explicitely:

uftp.client.host=your_client_ip_address
uftp.streams=2
encrypt data (at the cost of performance)
uftp.encryption=true
compress data
uftp.compression=true

Use the special value all to enable all available client IP addresses
for UFTP.

uftp.client.host=all

You can also override the UFTP server host, which can be useful in case the UFTP server is accessible
via multiple network interfaces:

uftp.server.host=myhost.com

UCC will try to use reasonable defaults for any missing parameters.

General commands

mkdir

This will create a directory (including required parent directories) remotely.

Example:

$ ucc mkdir https://mygateway:8080/SITE/rest/core/storages/HOME/files/pdfs

rm

This will remove a file or directory remotely. By default, UCC will ask for a confirmation.
Use the --quiet or -q option to disable this confirmation (e.g. when using
this command in scripts).

Example:

$ ucc rm https://mygateway:8080/SITE/rest/core/storages/HOME/files/pdfs

rename

This will rename/move a remote file/directory on the same storage.

Example:

$ ucc rename https://mygateway:8080/SITE/rest/core/storages/HOME/files/data/foo1.pdf /files/data/foo2.pdf

will rename the file foo1.pdf to foo2.pdf.

stat

This command shows full information on a certain file or directory.
Add the -m flag to also print user-defined metadata.

Example:

$ ucc stat -m https://mygateway:8080/SITE/rest/core/storages/HOME/files/foo.txt

Finding data

ls

This will list a remote directory. Useful options are: -l (detailed output), -H
(human-friendly) and -R (recurse).

Example:

$ ucc ls -l -H https://mygateway:8080/SITE/rest/core/storages/HOME/

If the storage supports metadata, you can get the metadata of a single file using ls -l -m:

$ ucc ls -l -m https://mygateway:8080/SITE/rest/core/storages/HOME/.bashrc

Using the StorageFactory service

UNICORE sites may allow users to dynamically create storage resources,
which even can be linked to special back-end systems like Apache HDFS, iRODS,
or cloud storage like Amazon S3.

You can find out if there are sites supporting this StorageFactory
service either by running the system-info -l command, or better using

$ ucc create-storage -i

This will list the available StorageFactory services and also show
which types of storage are supported and how much space is left on
each of them.

UCC supports creating storages via the create-storage command.
The simple

$ ucc create-storage

will create a new storage resource using the default storage type at
some site.

Usually you want to control at least where the storage is created.
Additionally, the type of storage and some parameters can be passed to
UCC.

As an example, creating a storage of type S3 would look like this:

$ ucc create-storage -t S3 accessKey=... secretKey=...

You can also read parameters from a file. Say you have your S3 keys in a file
s3.properties, then you can use the following syntax:

$ ucc create-storage -t S3 @s3.properties

You can also mix this with the normal key=value syntax, or mix it like this:

$ ucc create-storage -t S3 accessKey=@s3.accessKey secretKey=@s3.secretKey

The last version key=@file causes just the value to be read from the
named file.

[image: metadata-img] Metadata management functions

UCC offers a simple interface to access the metadata
management service in UNICORE.

Basics

The metadata functions are all accessed via a single UCC command
metadata. The actual operation to be performed is given
with the -C (i.e. command) option.

The storage to be operated upon is given using the -s option.

In addition to the URL, the name of the target file on the storage
is required.

Metadata is represented in JSON format. The metadata operations
usually read metadata from a file (or write results to a file), which
is specified using the -f option.

In the following examples, <STORAGE> denotes the URL of a storage
capable of handling metadata.

Available commands

Creating metadata

To create metadata, a file in JSON format is required containing key-value
pairs. For example, edit the file meta.json to contain:

{
 "foo": "bar"
}

Say we have a file test on our storage, then you can create metadata as
follows:

$ ucc metadata -C create -f meta.json -s <STORAGE> /test

If you now look at the file with ls -l -m,

$ ucc ls -l -m <STORAGE>/test

you should get something like this:

-rw- 3344 2011-06-27 22:32 /test
{
 "foo": "bar",
 "resourceName": "/test"
}

Reading metadata

Apart from the ls -l -m used above, there is also an explicit
read command, which can write the metadata to a file as well:

$ ucc metadata -C read -s <STORAGE> /test -f out.json

The -f option is optional.

Updating metadata

Using update, the given metadata is merged with any existing metadata.
Say we have a file x.json containing:

{
 x: y
}

We can append this to the existing metadata:

$ ucc metadata -C update -s <STORAGE> /test -f x.json

Check that the metadata has indeed been appended.

Deleting metadata

Explicitely deleting is also possible:

$ ucc metadata -C delete -s <STORAGE> /test

Check that the metadata has indeed been deleted.

Searching

Searching requires a search string (according to the rules
of Apache Lucene), and is triggered by the search command:

$ ucc metadata -C search -q "foo" -s <STORAGE> /

Triggering metadata extraction

To trigger the extraction of metadata on the server, use the start-extract
command:

$ ucc metadata -C start-extract -s <STORAGE> /

In this case the / denotes the base path from which to start the extraction process.

[image: workflow-img] Workflows

Introduction

UCC supports the UNICORE Workflow service and allows
to submit workflows and manage them.

The workflows are executed server-side, and UCC is used only for
submitting, managing data and getting results. UCC also provides
helper features for dealing with the workflows’ input/output data and
parametrised workflow templates.

Note

Version 8.x of the Workflow service has changed a lot, and existing
7.x XML workflows will need to be converted / refactored.

Command overview

The following commands are provided:

	workflow-submit: submit a workflow file

	workflow-control: abort or resume a running workflow

	list-workflows: list information about workflows

More details and examples follow below.

Basic use

To check the availability of the Workflow service in the configured
registry, issue the following command:

$ ucc system-info -l

This should show at least an accessible Workflow service.

The distribution contains some example workflow files in the samples/workflows directory
that you can edit and submit.

$ ucc workflow-submit yourworkflow.json

which will submit the workflow and print the address of the workflow to standard output.

To get the workflow status:

$ ucc list-workflows <workflow_address>

To list all your workflows, you can use the list-workflows command without an explicit
workflow address:

$ ucc list-workflows -l

Workflow description format

The JSON format used by that the Workflow service can be found
here.

Managing workflow data

Importing local data for use by a workflow

If you have local files that need to be imported before starting
the workflow, you can use a normal UCC job file that
contains only an Imports section:

{
 "Imports":
 [
 { "From": "local_file_1", "To": "wf:workflow_file_name_1", },
 { "From": "local_file_2", "To": "wf:workflow_file_name_2", },
 ...
],
}

UCC will upload the local files to a remote storage (which you can specify)
and automatically register them with the workflow upon submission.

Your workflow JSON can then reference them as wf:... in the workflow
activities.

You can also manually register files by adding in inputs section to your
workflow JSON.

{
 "inputs": {
 "wf:infile1" : "remote_url_1",
 "wf:infile2" : "remote_url_2",
 },
}

Workflow templates

If the workflows contains a Template parameters section, the
corresponding replacement will be done by reading parameter values
from the .u file. These so-called workflow templates can be a very
simple and safe way to make adjustments in complex workflows before
submission. As an example, consider the following workflow:

{
 "Template parameters": {
 "SLEEPTIME": {
 "type" : "INTEGER",
 "default": "10",
 }
 },

 "activities" : [
 {
 "id": "sleep1",
 "job": {
 "Executable": "sleep",
 "Arguments": ["${SLEEPTIME}"],
 },
 },
],
}

This introduces a parameter SLEEPTIME with default value 10.

When the workflow is submitted, you can specify a JSON file with the -u option,
which will be checked for a parameter named SLEEPTIME

{
 "SLEEPTIME": "1",
}

and if present, the value will be replaced in the workflow.

Resuming a held workflow

A workflow in status HELD can be resumed using the workflow-control resume command. If the workflow
has variables/parameters, updated values can be sent with the resume command.

[image: batch-img] Batch processing

The batch command allows you to run many jobs without having to start
UCC each time. You can control how many jobs should go to which site.
This allows efficient job processing, while putting some load on the
client machine. If you need to take the client offline, you should consider
using the workflow system instead, which also allows efficient high-throughput
processing.

Assume you have a bunch of jobs in UCC’s job description format stored in a directory jobs.
The output should go to a directory out. You can run them all through
UCC using a single invocation as follows:

$ ucc batch -i jobs -o out

As job files, UCC will accept files ending in .u.

Options

You can run in follow mode, where UCC will watch the input directory, and will
process new files as they arrive:

$ ucc batch -f -i jobs -o out

Performance tuning options

Getting the most performance out of UCC and the UNICORE installation
can be a challenging task. Sending too many jobs to a site might
decrease throughput, sometimes the client machine can be the limiting
factor, etc.

You should experiment a bit to get the best performance for your
specific setup. UCC has many options available for tuning. Here is an
overview:

Table 10 Tuning options for the UCC batch mode

	Option (short and long form)

	Description

	-K,–keep

	Do not delete finished jobs on the server. By default,
finished jobs are destroyed.

	-m,–max <MaxRunningJobs>

	Limit on jobs submitted by UCC at one time
(default: 100)

	-t,–threads <NumThreads>

	Number of threads to be used for processing
(default: 4)

	-u,–update <UpdateInterval>

	Minimum time in milliseconds between status requests
on a single job (Default: 1000)

	-R,–no-resource-check

	Do not check if the necessary application is available
on the target system (will increase performance a bit)

	-X,–no-fetch-outcome

	Do not fetch standard output and error

	-S,–submit-only

	Only submit the jobs, do not wait for them to finish

	-M,–max-new-jobs

	Limit the number of job submissions (default: 100)

	-s,–sitename

	Specify which site to use

	-W,–site-weights

	Specify a file containing site weights

Resource selection in batch mode

By default, the UCC batch mode will select a random site for running a job. You can modify
the selection in different ways:

	using the -s option or a Site: <sitename>, entry in the job file, you can specify the
site directly

	use the -W option to specify a file containing site weights

Say you have two sites where one site is a big cluster and the other a small cluster. To send more
jobs to the big cluster, you can use the site weights file:

#example site weights file for use with "ucc batch -W ..."

BIG-CLUSTER = 100
SMALL-CLUSTER = 10

#send no jobs to this site
BAD-CLUSTER = 0

set default weight (for any sites not specified here)
UCC_DEFAULT_SITE_WEIGHT = 10

This would tell UCC to send 10 times more jobs to the BIG-CLUSTER site,
and send no jobs to the BAD-CLUSTER. All other sites would get weight 10,
i.e. the same as SMALL-CLUSTER.

[image: usage-img] The UCC shell

If you want to run a larger number of UCC commands, the overhead of starting
the Java VM or checking the registry may become annoying. For this scenario,
UCC offers a shell that allows the user to enter UCC commands interactively.

It is started by

$ ucc shell <options>

If you want to process a list of commands from a file instead of typing them, you can
start the shell like this:

$ ucc shell -f commandsfile

or on Unix you can use the redirection features:

$ ucc shell < commandsfile

Changing property settings

To change a property setting in shell mode, you can use the set command.
Without additional arguments, current properties are listed:

ucc> set registry=https://... output=/tmp ...

To set one or more properties, add space separated key=value strings:

ucc> set output=/work registry=https://....

You can also clear a property (set it to null) by using unset:

ucc> unset registry

Variables referenced via $var_name or ${var_name} will be replaced
in commands. You can use this to make commands shorter and more
readable. It’s also possible and useful to pre-set certain things in
your preferences file.

For example,

ucc> set S1=https://myserver/my_site/rest/core/storages/HOME
ucc> ls -l $S1

A special variable $_ exists that is set by various commands to
the last thing that was created or accessed.

For example,

ucc> run -a date.u
ucc> job-status $_

Running an external command

You can run an external command via the system (or simply !) shell
command. For example,

ucc> system vi job.u

or simply

ucc> ! cat job.u

Exiting the shell

To exit, type exit or press Control-D.

[image: share-img] Sharing resources

Accessing UNICORE resources (jobs, storages, …) is usually only
possible when you own the resource or when there are special
server-side policies in place that allow you access.

UNICORE supports ACLs on a per-service instance basis.
This means, that you can give other users access to your jobs,
storages, etc.

For example, you might want to allow others to check your jobs’ status,
or even allow them to abort jobs.

Note that to access actual files the permissions on file system
level still need to match. Usually this is achieved by using Unix
groups.

Editing ACLs

The ACLs are managed via the share command.
Use the basic

$ ucc share <URL>

to share the current ACL for the given resource, where URL is the full URL
of the resource, e.g.

$ ucc share https://localhost:8080/DEMO-SITE/rest/core/storages/HOME

To add an ACL entry use:

$ ucc share ACE1 ACE2 ... <URL>

where ACE is an access control entry expressed in a simple format:

[read|modify]:[DN|VO|GROUP|UID]:[value]

For example, to give modify permission to a user whose UNIX user id on the
target system is test, you would use:

$ ucc share modify:UID:test <URL>

To delete entries use the -d option:

$ ucc share -d modify:UID:test <URL>

To delete all entries use the -b option:

$ ucc share -b <URL>

Permission levels

The permissions controlled by ACLs are as follows:

	read: access resource properties

	modify: perform actions e.g. job submission or creating a file export

Only the owner of a resource can edit the ACL or destroy the resource.

[image: tunneling-img] Port forwarding / tunneling

Starting with UNICORE 9.1.0, it is possible to open a tunnel (TCP socket connection) from
the client to a service running on the HPC cluster. The service can run on a login node
or even on a compute node.

Since this mechanism uses only the established UNICORE communication channels, it will work
in any situation, unhindered by firewalls.

Traffic is forwarded from the client through the UNICORE HTTPS stack down to the
cluster login node, where a (TSI) process is in charge of connecting to the backend
service and forwarding data back through the UNICORE stack to the client.
So there is chain of connections forwarding data through the following stack

	Client application

	Client-side listener (e.g. UCC)

	Gateway

	UNICORE/X

	Server-side listener (TSI process) on the login node

	Service

(in both directions).

That is quite a number of hops, so latency and throughput will be limited accordingly.

To establish the client side, UCC has a command open-tunnel, which behaves similarly to an
SSH tunnel (ssh -L ...)

It is started by

$ ucc open-tunnel -L <listen-port> <endpoint>

The listen-port is the port where a local application can connect. You can use “0” to use any free port.

The endpoint is a UNICORE job endpoint URL, with a few extra parameters added:

/forward-port?port=<service_port>&host=<service_host>&loginNode=<tsinode

The port parameter is mandatory, and denotes the port where the backend service is listening.

The host and loginNode are optional:

	host is the host where the service is running, must be reachable from the TSI (login node).
It defaults to localhost (as seen from the login node!).

	loginNode is useful in cases where there are multiple login nodes, and you wish to control
on which login node the forwarding process is launched.

Upon connection, the tunneling process is initiated, and the forwarding of data is started.
To stop listening and forwarding, press Control-C, or use some other method to stop the UCC process.

Example

While usually the backend service is also started via UNICORE, that is not strictly necessary.
Any of your job endpoints will do.

In this example, however, we launch a Python web server via UNICORE, and then connect to
that Python service via a tunnel.

Launch a UCC shell with ucc shell ... and run the following job to
start the service, which will be listening on port 8877:

run -a

{ "Executable" : "python3 -m http.server 8877" }

(type CTRL-D to to launch the job)

Make sure to wait until this job is running, i.e.

job-status $_

shows it as RUNNING. The UCC shell special variable $_ automatically contains
the last URL, i.e. the new job’s URL.

To open the tunnel:

open-tunnel -L 4321 $_/forward-port?port=8877

this will open a local listener on port 4321.

To test your tunnel, run something like the following (from ANOTHER terminal, don’t kill UCC):

wget http://localhost:4321/stdout

You might also try and open "http://localhost:4321" in a browser.

Final notes

Attention

USE RESPONSIBLY! This tool is not intended for high volume data streaming or a very high number of
concurrent connections, since it does incur some overhead on the UNICORE infrastructure.

[image: admin-img] UCC for site administrators

UCC can be used for administrative and user support tasks, like
checking server status, or getting the full details of a user job.

Security considerations

Usually, each UNICORE user has only access to his or her own resources
(such as jobs). For administrative use, you will need to aquire administrator
privileges. There are two ways to achieve this:

	create dedicated user credentials (e.g. a certificate) and map
them to the role admin (in the XUUDB, or whatever attribute source
you are using). This method is recommended if you want to remotely
administrate UNICORE/X.

	use the server keystore (of the UNICORE/X server you want to administrate)
as UCC keystore. This will also give you administrator privileges. For this you
will need to be logged on to the UNICORE/X server, and UNICORE/X must accept
certificate authentication.

Admin commands

UCC has dedicated commands for accessing the AdminService of a UNICORE/X container.
To get started, try:

$ ucc admin-info -l

UCC will try to access the admin service on each availabe UNICORE/X server. For each server,
a list of statistical and performance data will be listed.

It will also list the available admin commands for each server, with a
short description of their parameters. For example, here is a sample output:

https://localhost:8080/DEMO-SITE/services/AdminService?res=default_admin
 Services:
 TargetSystemFactoryService[1]
 ...
 Monitors:
 use.externalConnectionStatus.REST_UnitySAMLAuthenticator: OK
 use.security.overview: ServerIdentity: CN=Demo UNICORE/X,O=UNICORE,C=EU;Expires: Thu Sep 09 12:01:19 CEST 2032;IssuedBy: CN=Demo CA,O=UNICORE,C=EU

 Metrics:
 use.externalConnectionStatus.REST_UnitySAMLAuthenticator: OK
 use.rest.callFrequency: 0.016677196376660174
 ...
 Available commands:
 ShowJobDetails : parameters: jobID, [xnjsReference]
 ShowServerUsageOverview : parameters: [clientDN]
 ToggleResourceAvailability : 'resources' - comma separated list of IDs
 ToggleJobSubmission : parameters: [message]
 ToggleBESJobSubmission :

To invoke a command, the admin-runcommand is used. It can take
optional parameters.

Disabling/enabling job submission

For example, it is possible to disable/enable job
submission to the server, using the ToggleJobSubmission command,
which can take an optional message:

$ ucc admin-runcommand ToggleJobSubmission message="Maintenance"

The service will reply:

$> SUCCESS, service reply: OK - job submission is disabled

If a user now tries to submit, she will receive an error message on submission.
Running the command again will re-enable the service:

$ ucc admin-runcommand ToggleJobSubmission message="Maintenance"
$> SUCCESS, service reply: OK - job submission is now enabled

Getting job details

To get the full job details (for example in user support), try:

$ ucc admin-runcommand ShowJobDetails jobID=<unique_jobid>

For example,

ucc admin-runcommand ShowJobDetails jobID=461f78c7-82a6-4887-9c33-6f538a4b0cb2
SUCCESS, service reply: Job information for 461f78c7-82a6-4887-9c33-6f538a4b0cb2
{Info=Action ID : 461f78c7-82a6-4887-9c33-6f538a4b0cb2
Action type : JSON
Status : DONE (trans.: none)
Result : SUCCESSFUL [Success.]
Owner : CN=Demo User, O=UNICORE, C=EU
Job Definition: {"Job type":"interactive","DetailedStatusDisplay":"true","KeepFinishedJob":"true","Output":"/tmp","IDLocation":"/tmp","Executable":"date","haveClientStageIn":"false","Tags":["testing"]}
Processing context: de.fzj.unicore.xnjs.ems.ProcessingContext@17f4b0b6
Application Info: Application <unnamed>
Job log:
Thu Feb 25 16:25:07 CET 2021: Created with ID 461f78c7-82a6-4887-9c33-6f538a4b0cb2
Thu Feb 25 16:25:07 CET 2021: Created with type 'JSON'
Thu Feb 25 16:25:07 CET 2021: Client: Name: CN=Demo User,O=UNICORE,C=EU
Xlogin: uid: [schuller], gids: [schuller:audio, active=schuller, addingOSgroups: true]
Role: user: role from attribute source
Security tokens: User name: CN=Demo User,O=UNICORE,C=EU
Delegation to consignor status: true, core delegation status: false
Message signature status: UNCHECKED
Client's original IP: 127.0.0.1
Thu Feb 25 16:25:07 CET 2021: No staging in needed.
Thu Feb 25 16:25:07 CET 2021: Status set to READY.
Thu Feb 25 16:25:07 CET 2021: Status set to PENDING.
Thu Feb 25 16:25:08 CET 2021: Execution on login node
Thu Feb 25 16:25:08 CET 2021: Command is:
Thu Feb 25 16:25:08 CET 2021: #!/bin/bash -l
export PROJECTS_DIR=/opt/shared-data
#TSI_EXECUTESCRIPT

#RESOURCES
#TSI_DISCARD_OUTPUT true
#TSI_SCRIPT
#TSI_UMASK 77
umask 77
cd /opt/shared-data/UNICORE-Jobs//461f78c7-82a6-4887-9c33-6f538a4b0cb2/
 { date > /opt/shared-data/UNICORE-Jobs//461f78c7-82a6-4887-9c33-6f538a4b0cb2/stdout 2> /opt/shared-data/UNICORE-Jobs//461f78c7-82a6-4887-9c33-6f538a4b0cb2/stderr; echo $? > /opt/shared-data/UNICORE-Jobs//461f78c7-82a6-4887-9c33-6f538a4b0cb2//UNICORE_SCRIPT_EXIT_CODE ; } & echo $! > /opt/shared-data/UNICORE-Jobs//461f78c7-82a6-4887-9c33-6f538a4b0cb2//UNICORE_SCRIPT_PID
Thu Feb 25 16:25:08 CET 2021: TSI reply: submission OK.
Thu Feb 25 16:25:11 CET 2021: Submitted to classic TSI as [schuller schuller:DEFAULT_GID] with PID=30112 on [localhost]
Thu Feb 25 16:25:11 CET 2021: Exit code 0
Thu Feb 25 16:25:11 CET 2021: Job completed on BSS.
Thu Feb 25 16:25:11 CET 2021: Status set to DONE.
Thu Feb 25 16:25:11 CET 2021: Result: Success.
Thu Feb 25 16:25:11 CET 2021: Total: 3 sec., Stage-in: 0 sec., Queued: 0 sec., Main: 0 sec., Stage-out: 0 sec.}

Thus you can get a full view of what the user submitted and what was executed.

Listing jobs, sites, …

You can also use all normal UCC commands to access the server. Note
however that due to the authentication and authorisation system in
UNICORE, this may not always work as expected: the admin user might
not have the required Unix permissions to access files, list
directories, etc.

The UCC commands that list server-side things (list-jobs, etc.) accept
a filtering option, that can be used to limit the results of the operation.
Filtering works on the XML resource properties of the resource in question.

Filtering is enabled by the -f or --filter option of the form:

-f NAME OPERATOR VALUE

where NAME is the name of an element from the JSON resource properties.

For example, to list all jobs:

$ ucc list-jobs -f status equals RUNNING

To list all jobs submitted on Nov 13, 2007:

$ ucc list-jobs -f submissionTime contains 2007-11-13

Table 11 Filtering options

	Operator (long and short form)

	Description

	equals, eq

	String equality (ignoring case)

	notequals, neq

	String inequality (ignoring case)

	contains, c

	Substring match

	notcontains, nc

	substring non-match

	greaterthan, gt

	Lexical comparison

	lessthan, lt

	Lexical comparison

Low-level operations

UCC supports low-level access to REST API endpoints using the rest
command, specifically you can execute HTTP GET, PUT, POST and DELETE
requests with JSON content.

For example, to delete (destroy) a resource:

$ ucc rest delete <Address>

To get a complete property listing (i.e. print the JSON resource property document):

$ ucc rest get <Address>

To change properties, use the put command with JSON content:

$ ucc rest put '{"Tags": ["tests", "hpc"]}'

These commands can be abbreviated, e.g. ucc rest d <Address>

[image: groovy-img] Scripting

UCC can execute Groovy scripts. Groovy [https://groovy-lang.org] is a dynamic
scripting language similar to Python or Ruby, but very closely integrated with Java.
The scripting facility can be used for automation tasks or implementation of
custom commands, but it needs a bit of insight into how UCC and UNICORE work.

Script context

Your Groovy scripts can access some predefined variables that are summarized in the following table:

Table 12 Variables accessible for scripts

	variable

	description

	Java type

	registry

	A preconfigured client for accessing the registry

	eu.unicore.client.registry.IRegistryClient

	configurationProvider

	Security configuration provider (truststore, etc)

	de.fzj.unicore.ucc.authn.UCCConfigurationProvider

	auth

	REST authentication mechanism

	eu.unicore.services.rest.client.IAuthCallback

	registryURL

	the URL of the registry

	java.lang.String

	messageWriter

	for writing messages to the user

	de.fzj.unicore.ucc.MessageWriter

	commandLine

	the command line

	org.apache.commons.cli.CommandLine

	properties

	defaults from the user’s properties file

	java.util.Properties

Examples

Some example Groovy scripts can be found in the samples [https://github.com/UNICORE-EU/commandline-client/tree/master/distribution/src/main/samples] directory of the UCC distribution.

[image: faq-img] Frequently asked questions

Configuration

🤔 Do I really have to store my password in the preferences file? Isn’t
this insecure?

Putting the password in a file or giving it as a commandline parameter can be
considered insecure. The file could be read by others, and the commandline parameters may be
visible in for example in the output of the ps command.
Thus, UCC will simply ask for the password in case you did not specify it.

🤔 How can I enable more detailed logging?

UCC uses Log4j 2 [https://logging.apache.org/log4j/2.x/manual/configuration.html],
by default the configuration is done in <UCC_HOME>/conf/logging.properties. You can edit
this file and increase the logging levels, choose to log to a file or to the console, etc.

Usage

🤔 Can I use multiple registries with UCC?

Yes. Simply use a comma-separated list of URLs for the -c option.
However, you may only use a single key/truststore, so all registries (and sites listed in
them) must accept the same security credentials.

🤔 Can I upload and execute my own executable?

Yes. Check Running jobs.

🤔 Can I use UCC to list the contents of the registry?

Using the rest command (and optionally the UNIX jq utility for formatting the output),
this is very easy. For example,

$ ucc rest get https://localhost:8080/DEMO-SITE/rest/core/registries/default_registry | jq

will list the content of the registry.

[image: app-package-img] Building the UCC

Prerequisites

You need Java and Apache Maven.
Check the versions given in the pom.xml [https://github.com/UNICORE-EU/commandline-client/blob/master/pom.xml] file.

Building Java code

Clone the git repo and build the jars from the root dir:

$ git clone https://github.com/UNICORE-EU/commandline-client.git
$ cd commandline-client
$ mvn clean install -DskipTests

Creating distribution packages

The following commands create the distribution packages
in tgz, deb and rpm formats. The versions
are taken from the pom.xml [https://github.com/UNICORE-EU/commandline-client/blob/master/pom.xml].

tgz

$ cd distribution
$ mvn package -DskipTests -Ppackman -Dpackage.type=bin.tar.gz

deb

$ cd distribution
$ mvn package -DskipTests -Ppackman -Dpackage.type=deb -Ddistribution=Debian

rpm redhat

$ cd distribution
$ mvn package -DskipTests -Ppackman -Dpackage.type=rpm -Ddistribution=RedHat

[image: api-img] REST API

This document describes and documents the REST APIs for the UNICORE/X server (job
submission and management, data access and data transfer) and the Workflow server
(workflow submission and management).

The documentation generally refers to the latest released version.

A Python client library [https://github.com/HumanBrainProject/pyunicore/]
is under development on GitHub and can be installed from PyPI via
pip install pyunicore.

Also, have a look at Rest API Examples for some examples using PyUNICORE.

[image: Federating HPC with UNICORE]

Basics

The REST API supports both the JSON (application/json) and HTML (text/html) content types.

Base URL

The base URL of the the REST API for a single UNICORE/X server is
https://gateway_url/SITENAME/rest/core.

In the following, we will abbreviate this URL as BASE Authentication.

You need a user account on the UNICORE/X server, which is typically configured to
use a password
(or using an OAuth2 bearer token).
The supported authentication methods depend on the UNICORE server.

For example, when username/password are enabled you can use curl to access the base URL above:

$ curl -k -u user:pass -X GET -H "Accept: application/json" BASE

In the following examples, we leave out the authentication details!

User preferences

In some special cases, you as a user might have more than one available unix account, or you might
have more than just the user role on the server. It is possible to select from the available
attributes. Available attributes are: role, uid, group.

For example, to execute a call using the Unix ID some.user, you can specify this in a HTTP
header as follows:

$ curl -k -u user:pass -X GET -H "Accept: application/json" \
 -H "X-UNICORE-User-Preferences: uid:some.user" BASE

Or, to select role admin (if you are worthy):

$ curl -k -u user:pass -X GET -H "Accept: application/json" \
 -H "X-UNICORE-User-Preferences: role:admin" BASE

You can find out the available values for these attributes with a GET to the BASE URL!

To give more than one user preference, you can separate the values via commas, for example:

$ curl -k -u user:pass -X GET -H "Accept: application/json" \
 -H "X-UNICORE-User-Preferences: uid:myuser,group:mygroup" BASE

Security session handling

If authentication was successful, the server reply will include a security session ID and a
security session lifetime as HTTP headers:

X-UNICORE-SecuritySession:
X-UNICORE-SecuritySession-Lifetime: ...

The lifetime is given in milliseconds.

You can use the session ID in place of authentication info, i.e.

$ curl -k -H "X-UNICORE-SecuritySession: ..." BASE

If the session is no longer valid the server will reply with a HTTP 432 error code, and you
must re-send the authentication information.

Using security sessions is recommend especially when third-party IdPs for used for authentication,
because it reduces the load on the servers and improves throughput and turnaround time for your
API requests.

General API features

A few common operations and principles apply to all the REST resources.

	GET is used to retrieve information (resource properties).
Depending on the Accept: header the format can be JSON or HTML (JSON is recommended!).

	PUT is used to modify resource properties (JSON format).

	POST creates new resources (e.g. job submission). The URL of new resource is returned in
the response Location header. Some resources support POST also for triggering actions
(e.g., job abort).

	DELETE removes resources.

Media types

The REST API uses the following media types:

	application/json is the commonly used media type for all sorts of tasks.

	application/octet-stream : used for upload/download of file data.

Make sure to add the proper headers e.g. Accept: application/json and/or Content-Type:
application/json to your messages.

Error handling

As usual, a HTTP error code that is not in the 2xx range signifies some sort of problem. For
example,

	401 Unauthorized - your credentials are wrong or you do not have the right to access

	404 Not found - the resource does exist, or you have a typo in the URL

	500 Internal server error - a server-side error occurred

In many cases a JSON document containing an error message is returned.

Paging mechanism, using tags and controlling the output

Since lists of things can get long (e.g. files or jobs), there is a paging mechanism that is
available on all the list-like things like job lists.

Let’s look at an example. To list 5 jobs starting at an offset of 2, you’d do a GET for

BASE/sites/{id}/jobs?offset=2&num=5

The result would be something like:

{
 "_links": {
 "self": {
 "href": "BASE/sites/4q0b44VfBP2/jobs?offset=2&num=5"
 },
 "next": {
 "href": "BASE/sites/4q0b44VfBP2/jobs?offset=7&num=5"
 },
 "previous": {
 "href": "BASE/sites/4q0b44VfBP2/jobs?offset=0&num=5"
 }
 },
 "jobs": [
 "BASE/jobs/DZBiAG5O0kH",
 ... rest of job URLs omitted ...
]
}

Note that you get links to the next and previous page of results.

Another query parameter is tags which works on all lists of resources (jobs, storages, …
but not files) and which allows you to limit results to those elements that have the specified
tag(s).

BASE/sites/{id}/jobs/?tags="hpc,test"

Last not least you can control which fields you want in the output of a GET request. This is done
via another query parameter fields which works on all resources (jobs, storages, …) and
which allows you to limit results to the named fields.

BASE/sites/{id}/jobs/DZBiAG5O0kH?fields=status

	Parameter

	Format

	Description

	offset

	integer (0, 1, 2, …)

	How many elements of the list to skip

	num

	integer (0, 1, 2, …)

	How many elements you want

	tags

	comma-separated strings

	Only list elements with this tag

	fields

	comma-separated strings

	Only return the named properties

Modifying resource properties

Resource properties can be modified by a PUT request in JSON format, which contains the properties
and their new values, e.g.

{
 "tags": ["test", "hpc"],
 "foo" : "bar"
}

to modify the umask of a storage. The server replies with a JSON indicating which properties were
modified, or if errors occurred:

{
 "foo": "Property not found or cannot be modified!",
 "tags": "OK"
}

REST resources for jobs and data management

The base URL of the the REST API for a single UNICORE/X server is
https://gateway_url/SITENAME/rest/core.

	URL

	Method

	Description

	/

	GET

	Get info about the client, the server and links to other
resources

	/certificate

	GET

	Get the server’s public key (needs “Accept: text/plain”
or “Accept: *” header)

Synopsis

A GET request to the base URL retrieves some information about the current client, e.g. its
security attributes. Also, links to the other resources (sites, jobs, etc) are given, as well as
some information about the server.

API Summary

	URL

	Method

	Description

	/

	GET

	Get info about the client, the server and links to other
resources

	/certificate

	GET

	Get the server’s public key (needs “Accept: text/plain”
or “Accept: *” header)

Site factories

Synopsis

In UNICORE there are several factory services that are used to get general site information even
as a non-authorized (but authenticated) user.

The factories resource is used to access the target system factory services available to the user
and create new site resources.

API Summary

	URL

	Method

	Description

	/factories

	GET

	Get a list of all site factories

	/factories

	POST

	Create a new site

	/factories/id

	GET

	Get the representation of the given factory

	/factories/id

	POST

	Create a new site

	/factories/id/applications

	GET

	Get a list of all applications

	/factories/id/
applications/appID

	GET

	Get the representation of the given applications

Site properties

A site factory exposes its capablilities (number of CPUs, etc) via its JSON or HTML
representation. This includes the applications that are configured in the UNICORE server’s IDB
file.

Applications are listed in the form

NAME---vVERSION

e.g.

Date---v1.0

You can access more details about an application at the URL

BASE/factories/{id}/applications/{applicationID}

where the application ID is again composed of the application name and version as above.

Sites

Synopsis

The sites resource is used to access the target system services available to the user, create new
ones, and to submit jobs.

Creating a site

Using POST, a new site resource can be created.

$ curl -X POST -H "Content-Type: application/json" --data "{}" https://localhost:8080/DEMO-SITE/rest/core/sites

Note that if necessary, a default site is created automatically when you submit a job.

Site properties

A site exposes its capabilities (number of CPUs, etc) via its JSON or HTML representation. This
includes the applications that are configured in the UNICORE server’s IDB file.

Applications are listed in the form

NAME---vVERSION

e.g.

Date---v1.0

You can access more details about an application at the URL

BASE/sites/{id}/applications/{applicationID}

where the application ID is again composed of the application name and version as above.

Listing jobs

You can list all the jobs submitted to a site using the BASE/sites/{id}/jobs endpoint, by doing
a GET for

BASE/sites/{id}/jobs

Usually it is simpler to use the BASE/jobs endpoint.

API Summary

	URL

	Method

	Description

	/sites

	GET

	Get a list of all sites

	/sites

	POST

	Create a new site

	/sites/id

	GET

	Get a representation of the given site

	/sites/id

	DELETE

	Destroy a site (but not the jobs)

	/sites/id

	POST

	Submit a job to the site

	/sites/id/jobs?offset=

	GET

	List num jobs, starting at offset, with the
given tags

	/sites/id/applications

	GET

	Get a list of all applications

	/sites/id/applications/
appID

	GET

	Get a representation of the given application

Storages and files

Synopsis

The storages resource is used to access the storages available to the user, create new ones,
access files, and initiate file transfers. Storages may support metadata management as well
(depending on server configuration).

Listing storages

To get a list of storages accessible to you, simply do a GET for BASE/storages.

Each storage has a files subresource which is used for accessing files on a particular
storage.

To list files on a storage with id {id}, do a GET for BASE/storages/{id}/files/{filePath}.

The same way as for jobs, there is a paging mechanism.

Data upload and download

There are two ways to transfer data to/from a UNICORE storage via the REST API. The simpler, more
RESTful way is to use HTTP GET and PUT requests to download or upload data. This should be
straightforward, the only thing to note is to NOT use the media type application/json, which
is reserved for getting information about the file or changing properties.

For example, let’s download a file named stdout using curl:

$ curl -X GET BASE/storages/{id}/files/stdout

The GET supports the Range header, if you want to download only part of the file. For example,

$ curl -X GET -H "Range: bytes=10-42"

You can also get the “tail” of the file, e.g. to get the last 100 bytes

$ curl -X GET -H "Range: bytes=-100"

Similarly, to upload a file localfile to a remote file newfile:

$ curl -X PUT --data-binary @localfile BASE/storages/{id}/files/some_dir/newfile

Note

Any required parent directories will be created automatically.

Attention

There is a special feature related to the Content-Type header here. If the
UNICORE/X server is setup with metadata support, the value of the
Content-Type header will be stored in the file’s metadata. If you download the file later,
the correct Content-Type will be used. This will work nicely and automatically for every
media type EXCEPT application/json! See the Rest API Examples for a detailed example.

The second way is to create a UNICORE file transfer by POSTing to the /imports or /exports
path, which requires custom clients, e.g. to support UFTP [https://uftp-docs.readthedocs.io/en/latest/user-docs/uftp-client/index.html]. For
this reason, we do not consider this any further here.

Creating directories

If you want to create an empty directory, POST an empty JSON to
BASE/storages/{id}/files/{filePath}.

Copying and renaming data to the same storage

Copy and rename on the same storage is done by POSTing a JSON to specific action URLs.
The content of the JSON is

{"from": "source", "to": "target" }

and the URLs are

BASE/storages/{id}/actions/copy
BASE/storages/{id}/actions/rename

Copying data to another server

UNICORE supports server-to-server transfers using one of several protocols including the rather
efficient UFTP protocol [https://uftp-docs.readthedocs.io/en/latest]. This is initiated by POSTing to a
storage resource’s/transfers path BASE/storages/{id}/transfers.

The transfer is described using JSON, and can be either push or pull.

	Parameter

	Description

	file

	the file on the storage, relative to storage root

	target

	the target URL in case of “data push”

	source

	the source URL in case of “data pull”

	extraParameters

	any additional parameters (e.g. number of UFTP streams)

Note that to push data from a storage, you’d use the file and target parameters,
while for data pull, you need the file and source.

For example, to pull a file via UFTP, you would POST a JSON that looks something like this:

{
 file: "localFile.txt",
 source: "UFTP:https://somehost/SITE/rest/core/storages/{id}/files/path_to_file"
 extraParameters: {
 "uftp.compression" : true,
 }
}

You can also schedule the transfer, by using

scheduledStartTime: <TIME in ISO "yyyy-MM-dd'T'HH:mm:ssZ" format>

as one of the extraParameter settings.

Files and metadata

Files on a storage are accessed via the files subresource, e.g.

BASE/storages/tmp/files/test.txt

would access the file test.txt on the storage with id tmp.

Depending on the media type used, GET and PUT fulfill different functions.
Using JSON, the file’s properties can be accessed or modified. Using
application/octet-stream the actual binary file data can be downloaded or uploaded.

The file properties include metadata, which can also be modified (if the server is configured so
that metadata is supported).

Searching the metadata index

If the storage supports metadata, the index can be searched using a GET request as follows:

$ curl -H "Accept: application/json" BASE/storages/{id}/search?q=querystring

The query string is appended as the ?q=... URL query parameter. The server will reply
with a JSON listing the files found:

{
 "status": "OK",
 "numberOfResults": 2,
 "_links": {
 "search-result-1": {
 "href": "https://..."
 },
 "search-result-2": {
 "href": "https://..."
 },
 ...
 },
 "query": "query-string"
}

Triggering the automated metadata extraction

Triggering UNICORE’s metadata extraction is done by a POST to an action URL for
a file or a directory.

$ curl -X POST BASE/storages/{id}/files/some_directory/actions/extract --data-binary @params.json -H "Content-Type: application/json"

This would extract metadata from the files in the some_directory directory.

The POSTed JSON can be empty {}, or it may contain extra parameters controlling the extraction
process. Currently only a single parameter is supported, which controls the recursion depth for
the extraction process, e.g.

{
 "depth": "2"
}

API Summary

	URL

	Method

	Description

	/storages

	GET

	Get a list of all storages

	/storages

	POST

	Create a new storage

	/storages/id

	GET

	Get a representation of a storage

	/storages/id

	DELETE

	Destroy a storage. Depending on the storage type,
this may delete the physical directory.

	/storages/id/files/
filePath

	GET (as
application/json)

	Get file list or file details

	/storages/id/files/

	PUT (as
application/json)

	Modify file properties (including metadata)

	/storages/id/files/

	GET (as
application/
octet-stream)

	Download a file

	/storages/id/files/
filePath

	PUT (as
application/
octet-stream)

	Upload a file

	/storages/id/files/
dirPath

	POST

	Create a new directory

	/storages/id/files/
filePath

	DELETE

	Delete a file or directory

	/storages/id/actions/copy

	POST

	Copy file on the same storage resource

	/storages/id/actions/
rename

	POST

	Rename file on the same storage resource

	/storages/id/imports

	POST

	Create an client-server transfer (data upload)

	/storages/id/exports

	POST

	Create an server-client transfer (data download)

	/storages/id/transfers

	POST

	Create a server-server transfer

	/storages/id/search?q=
query-string

	GET

	Search the metadata index using the given query
string

Storage factories

Synopsis

Storage factory endpoints allow the user to create Storage instances. Depending on the
UNICORE server configuration there may be several types of Storages available, which may
accept parameters to configure them.

The storagefactories resource is used to access the storage factory services available
to the user, which then can be used to create new Storage endpoints.

These Storage endpoints are typically used as temporary resources, since they will eventually
get cleaned up automatically by the server.

Creating storages

To create a Storage, you would POST to the appropriate endpoint:

$ curl -X POST BASE/storages/default_storage_factory --data-binary @params.json -H "Content-Type: application/json"

The POSTed JSON can be empty {}, which will create a Storage pointing to some pre-configured directory
on the HPC file system.

It may contain extra parameters controlling the type of storage that is created, and also extra parameters
depending on the type. You can get more information about the possible types and parameters by
inspecting the properties of the storagefactories endpoint, and the properties of the
actual factories that are configured.

For example, the storagefactories/default_storage_factory endpoint supports a ‘path’ parameter, which controls
the path the new Storage should access.

{
 "path": "/opt/data/"
}

API Summary

	URL

	Method

	Description

	/storagefactories

	GET

	Get a list of all storage factories

	/storagefactories/id

	GET

	Get the representation of the given factory

	/storagefactories/id

	POST

	Create a new storage endpoint

Jobs

Synopsis

The jobs resource ist used to access the jobs available to the user, to monitor and manage them.
It is also possible to submit new jobs.

Job description format

The job description is described here.

Data management

The job description can contain data staging instructions for instructing the server to download
input data before running the job, and for uploading results to some remote location when the job
is done.

In addition, UNICORE supports client-controlled data staging, i.e. the client can optionally
upload required data to the job’s working directory. You can interact with the jobs working
directory, which is a normal UNICORE storage. Thus all the storage functions above are applicable
here as well.

In case you do want to upload any data, you can set an additional flag in the job description
JSON:

{
 "haveClientStageIn": "true",
}

In this case, the full job submission sequence is:

	submit job

	upload data from client to server

	start job

Note however that small(!) files can be embedded into the job description as well.

In the Rest API Examples you will find some typical job submission and management examples.

Starting, aborting or restarting jobs

To abort or restart a job, the REST API uses POST requests to special action links, see the API
summary below.

API Summary

	URL

	Method

	Description

	/jobs?offset=

	GET

	Get a list of all jobs

	/jobs

	POST

	Submit a new job. The site will be chosen
automatically

	/jobs/id

	GET

	Get a representation of the given job

	/jobs/id/details

	GET

	Get batch system level information about the job
(if available)

	/jobs/id

	DELETE

	Destroy the job and its working directory.

	/jobs/id/actions/start

	POST

	Start the job (in case the client did manual
staging)

	/jobs/id}/actions/abort

	POST

	Abort the job

	/jobs/id/actions/restart

	POST

	Restart the job

Job properties

To get information about a job, do a GET request to the /jobs/ID endpoint.

	Property

	Values

	Description

	status

	UNKNOWN, STAGINGIN, READY,
QUEUED, RUNNING, STAGINGOUT,
FAILED, SUCCESSFUL

	The status of the job

	statusMessage

	string

	status / error summary message

	name

	string

	Job name as submitted, or “N/A”

	log

	string

	Execution log

	exitCode

	integer

	exit code of the application (if
available)

	queue

	string

	batch queue, or “N/A”

	submissionTime

	date-time

	job submission time

	terminationTime

	date-time

	time of automated job cleanup

	currentTime

	date-time

	current server time

	owner

	X500 name

	job owner (who submitted it)

	acl

	acl

	access control list

	submissionPreferences

	map

	user preferences (uid, gid) if
applicable

Transfers

Synopsis

The transfers resource ist used to access the server-to-server file transfers available to the
user, to monitor and manage them.

API Summary

	URL

	Method

	Description

	/transfers

	GET

	Get a list of all transfers

	/transfers/id

	GET

	Get a representation of a transfer

	/transfers/id

	DELETE

	Abort and destroy the transfer

Workflow

Synopsis

The UNICORE Workflow system can be accessed for workflow submission and management.

Basics like authentication, user preferences, security sessions work the exact same way as for a
UNICORE/X server.

NOTE that the BASE url for workflows is:

https://gateway_url/WORKFLOW_SITENAME/rest/workflows

This base workflows URL is used to list the workflows available to the user and submit new
ones.

API Summary

	URL

	Method

	Description

	/

	GET

	Get a list of all workflows accessible to the
user

	/?offset=

	GET

	List num workflows, starting at offset, with the
given tags

	/

	POST application/
json

	Submit a new workflow and start processing it

	/id

	GET

	Get a representation of the workflow with the
given ID

	/id/actions/abort

	POST

	Abort the workflow with the given ID

	/id/actions/resume

	POST

	Resume the workflow with the given ID, if in
state “Held”

	/id/jobs?offset=

	GET

	Get a list of all jobs submitted for this
workflow

	/id/files

	GET

	Get a list of the workflow files for this
workflow

	/id/files

	PUT

	Modify the list of the workflow files for this
workflow

Workflow submission

Submitting a workflow is done with a single POST with Content-Type: application/json
to the base URL.

If successful, a new workflow instance will be created, and the URL returned in a HTTP location
header.

If the workflow contains errors, the response body will contain a list of errors.

Workflow description format

The JSON workflow description as understood by the Workflow engine is described here:
 Workflow description.

Workflow properties

For each workflow, a GET request will retrieve a representation of the current workflow state,
including the current state of the workflow variables.

To get a list of jobs that were submitted for the workflow, do a GET request to
BASE/{id}/jobs.

To get a list of workflow files (registered names and physical locations) for the workflow, do a
GET request to BASE/{id}/files.

Hold and resume

A workflow in held state (waiting for user input) can be resumed by a POST to the URL
BASE/{id}/actions/resume with JSON content. The JSON can contain new values for any workflow
variables, e.g.

{
"Variable1": "10",
"Variable2": "true",
}

Utility endpoints

Getting the server certificate

A GET request to BASE/certificate will retrieve the server’s certificate in PEM format

$ curl -k BASE/certificate
-----BEGIN CERTIFICATE-----
MIIC3j...
-----END CERTIFICATE-----

Creating a token

The GET request to endpoint BASE/token allows you to create a JWT token signed by the server, that
can be used for authentication later.

$ curl -k BASE/token
eyJh...

The token will (of course) give the same level of authentication that was used when creating it!

The endpoint accepts parameters as query parameters to the GET request

	lifetime token lifetime in seconds. If not set, the server’s default is used (usually 300 seconds)

	limited=true will make the token only valid for the issuing server

	renewable=true will allow to get new tokens using the issued token

For example

$ curl -k -u demouser:test123 "BASE/token?lifetime=3600&limited=true&renewable=true"
eyJh...

Examples and HowTos

Can be found here Rest API Examples.

Rest API Examples

The following are some examples that use Python and the PyUNICORE library [https://github.com/HumanBrainProject/pyunicore/].

PyUNICORE can be installed from PyPI using

pip install -U pyunicore

The full documentation for PyUNICORE can be found
here [https://pyunicore.readthedocs.io/].

[image: job-desc-img] Basic job submission

 Job submission and management

[image: data-img] Storages and data management

 Storages and data management

[image: workflow-img] Workflow submission and management

 Workflow submission and management

[image: job-desc-img] Job submission and management

#!/usr/bin/env python3

import json
import pyunicore.client as uc_client
import pyunicore.credentials as uc_credentials

Base URL
base = "https://localhost:8080/DEMO-SITE/rest/core"
print ("Accessing REST API at ", base)

#
setup authentication using username and password
#
credentials = uc_credentials.UsernamePassword("demouser", "test123")

#
Create a client
#
site_client = uc_client.Client(credentials, base)

#
Run a test job
#
job_description = {'Executable': "/bin/ls", 'Arguments' :["-lisa", "$HOME"], }

job = site_client.new_job(job_description)
print("Submitted: %s" % job)

let's wait while the job is still running
job.poll()

print job properties
print (json.dumps(job.properties, sort_keys=True, indent=4))

Accessing job outputs

We can access the wob working directory and the stdout/stderr files

working_dir = job.working_dir
print (json.dumps(working_dir.properties, sort_keys=True, indent=4))

Let's list all files in the working directory

for f in working_dir.listdir("."):
 print(f)

Now let's download data from the 'stdout' file
stdout_content = working_dir.stat("stdout").raw().readlines()
for line in stdout_content:
 print(line)

[image: data-img] Storages and data management

 #!/usr/bin/env python3

import json, time
import pyunicore.client as uc_client
import pyunicore.credentials as uc_credentials

Base URL
base = "https://localhost:8080/DEMO-SITE/rest/core"
print ("Accessing REST API at ", base)
setup authentication using username and password
credentials = uc_credentials.UsernamePassword("demouser", "test123")
Create a client
site_client = uc_client.Client(credentials, base)

List storages
all_storages = site_client.get_storages()
for storage in all_storages:
 print(storage)

create two storages for testing
storage = site_client.new_job({}).working_dir
storage2 = site_client.new_job({}).working_dir

storage properties
print (json.dumps(storage.properties, sort_keys=True, indent=4))

upload some data
storage.upload("test.txt", destination="test.txt")

List all files
for f in storage.listdir("."):
 print(f)

Access a file
test_file = storage.stat("test.txt")
print (json.dumps(test_file.properties, sort_keys=True, indent=4))

Download data from that file
file_content = test_file.raw().readlines()
for line in file_content:
 print(line)

server-server copy: "storage2" pulls file from "storage"
source = storage._to_file_url("test.txt")
print("Source file URL: "+source)
transfer = storage2.receive_file(source, "copied-test.txt")
while transfer.is_running():
 time.sleep(1)
print (json.dumps(transfer.properties, sort_keys=True, indent=4))

Access copied file
copied_file = storage2.stat("copied-test.txt")
print (json.dumps(copied_file.properties, sort_keys=True, indent=4))

[image: workflow-img] Workflow submission and management

#!/usr/bin/env python3

import json
import pyunicore.client as uc_client
import pyunicore.credentials as uc_credentials

base = "https://localhost:8080/WORKFLOW/rest/workflows"
print ("Accessing Workflow REST API at ", base)

#
setup authentication using username and password
#
credentials = uc_credentials.UsernamePassword("demouser", "test123")

#
Create a client for the Workflow service
#
workflow_client = uc_client.WorkflowService(credentials, base)

#
create the workflow description
#

wf_json = {
 "activities": [
 {
 "id": "date1",
 "job": {
 "Executable": "date",
 "Job type": "INTERACTIVE",
 }
 }
],
}

#
create a new workflow instance on the server
#
workflow = workflow_service.new_workflow(workflow_description)

see the workflow properties
print (json.dumps(workflow.properties, sort_keys=True, indent=4))

[image: job-desc-img] Job description format

A UNICORE job describes a single job on the target system.

By default, the job will be submitted to the batch system and run on a compute node.
However, UNICORE supports other job types as well.

UNICORE uses a JSON format that allows you to specify the application or executable you want to
run, arguments and environment settings, any files to stage in from remote servers and any result
files to stage out. Depending on the client, the JSON may also contain additional instructions
that are relevant to that client, so make sure to check the client manuals as well.

Overview

UNICORE’s job description consists of several parts (their order does not matter):

	an Imports section listing data to be staged in to the job’s working directory from remote
storage locations (and/or the client’s file system, if you use UCC)

	pre-processing

	a section describing the main executable

	post-processing

	an Exports section listing result files to be staged out to remote storage locations

	a Resources section stating any resource requirements like batch queue, job runtime or number
of nodes

	a number of additional elements for setting the job name, or defining tags for the job

Here is a table listing the supported elements, these will be described in more detail below.

	Tag

	Type

	Description

	ApplicationName

	String

	Application name

	ApplicationVersion

	String

	Application version

	Executable

	String

	Command line

	Arguments

	List of strings

	Command line arguments

	Environment

	Map of strings

	Environment values

	Parameters

	Map

	Application parameters

	Stdout

	String

	Filename for the standard output (default:
“stdout”)

	Stderr

	String

	Filename for the standard error (default:
“stderr”)

	Stdin

	String

	Filename for the standard input (optional)

	IgnoreNonZeroExitCode

	“true” / “false”

	Don’t fail the job if app exits with non-zero
exit code (default: false)

	User precommand

	String

	Pre-processing

	RunUserPrecommandOnLoginNode

	“true”/”false”

	Pre-processing is done on login node (default:
true)

	UserPrecommandIgnoreNonZeroExitCode

	“true”/”false”

	Don’t fail job if pre-command fails (default:
false)

	User postcommand

	String

	Post-processing

	RunUserPostcommandOnLoginNode

	“true” / “false”

	Post-processing is done on login node (default:
true)

	UserPostcommandIgnoreNonZeroExitCode

	“true”/”false”

	Don’t fail job if post-command fails (default:
false)

	Resources

	Map

	The job’s resource requests

	Project

	String

	Accounting project

	Imports

	List of imports

	Stage-in / data import

	Exports

	List of exports

	Stage-out / data export

	haveClientStageIn

	“true” / “false”

	Tell the server that the client does / does not
want to send any additional files

	Job type

	‘batch’,
‘on_login_node’,
‘raw’,
‘allocate’

	Whether to run the job via the batch system
(‘batch’, default) or on a login node
(‘on_login_node’), or as a batch job with
user-specified file containing the batch
batch system directives (‘raw’), or to only
‘allocate’ resoures but not start anything

	Login node

	String

	For ‘on_login_node’ jobs, select a login node
by name, as configured server side. Wildcards
‘*’ and ‘?’ can be used)

	BSS file

	String

	For ‘raw’ jobs, specify the relative or absolute
file name of a file containing batch system
directives. UNICORE will append the user
executable.

	Tags

	List of strings

	Job tags

	Notification

	String

	URL to send job status change notifications to
(via HTTP POST)

	User email

	String

	User email to send notifications to (if the
batch system supports it)

	Name

	String

	Job name

Job elements

Job types

UNICORE supports four types if jobs. They are selected by the Job type
element. If not given, batch is the default.

	batch (or normal) - this is the default. UNICORE submits the job to the batch system.
After being scheduled, the specified executable is launched on the requested number of compute nodes.
The job’s resource requests (like number of nodes or requested run time) are taken
from the job’s Resources section.

	on_login_node (or interactive) - the specified executable will be launched on a login node.
If you want, you can select the login node with the Login node element.

	raw - the job goes to the batch system, but the resources are taken from an additional file,
which contains BSS directives (e.g.``#SBATCH …`` in the case of Slurm).
The name of the file containing BSS directives is given via the BSS file element.

	allocate - this is basically the same as batch, but it only creates an allocation on
the batch system, without launching any user tasks. You can submit tasks into the allocation
later.

Specifying the executable or application

To directly call an executable on the remote system:

{
 "Executable": "/bin/date",
}

You can specify a UNICORE application (defined in the server’s IDB) by name and (optional)
version:

{
 "ApplicationName": "Date",
 "ApplicationVersion": "1.0",
}

Note the comma-separation and the curly braces.

Arguments and Environment settings

Arguments and environment settings are specified using a list of String values. Here is an
example.

{

 "Executable": "/bin/ls",

 "Arguments": ["-l", "-t"],

 "Environment": ["PATH=/bin:$PATH", "FOO=bar"],

}

Argument sweeps

To create a sweep over an Argument setting by replacing the value by a sweep specification. This
can be either a simple list:

"Arguments": [
 { "Values": ["-o 1", "-o 2", "-o 3"] },
],

or a range:

"Arguments": {
 "-o", { "From": "1", "To": "3", "Step" : "1" },
},

where the From, To and Step parameters are floating point or integer numbers.

Application parameters

In UNICORE, parameters for applications are often transferred in the form of environment variables.
For example, the POVRay application has a large set of parameters to specify image width, height and
many more. You can specify these parameters in a very simple way using the Parameters keyword:

{
 "ApplicationName": "POVRay",

 "Parameters": {
 "WIDTH": "640",
 "HEIGHT": "480",
 "DEBUG": "",
 },

}

Note that an empty parameter (which does not have a value) needs to be written with an explicit
empty string due to the limitations of the JSON syntax.

Parameter sweeps

You can sweep over application parameters by replacing the parameter value
by a sweep specification. The replacement can be either a simple list:

"Parameters": {
 "WIDTH": { "Values": ["240", "480", "960"] },
},

or a range:

"Parameters": {
 "WIDTH": { "From": "240", "To": "960", "Step": "240" },
},

where the From, To and Step parameters are floating point or integer numbers.

Pre- and postprocessing

In addition to the main executable (or application), a UNICORE job can contain
pre- and/or postprocessing tasks that are run before / after the main executable.

The main elements for this are

	User precommand - this will be run after the data stage-in and before the main
executable

	User postcommand - this will be run after the main executable and before starting to
stage-out data

For example

{
 "User precommand": "./preprocessing.sh",

 "Executable": "./main.sh",

 "User postcommand": "./post-processing.sh"

}

The pre/post commands will be run on a login node by default. Failure of the pre/post
commands will cause the job to fail.

The default behaviour can be modified via the following options:

	RunUserPrecommandOnLoginNode: 'false' - add pre processing as a prolog to the main
job script

	UserPrecommandIgnoreNonZeroExitCode - don’t fail the job if the pre command exits with a
non-zero exit code

	Login node - select a preferred login node

and the same for the post command.

Job data management

In general, your job will require data files either from your client machine or from some
remote location. Also, result files and other output files need to be accessible, or need
to be exported (staged out) when the user task has finished executing.

Most of the job data management will be handled via the job’s workspace, which is a unique,
per-job directory that UNICORE creates when the job is submitted, and that is linked to the
job. The job directory can be accessed at any time during the job’s life time.

Jobs without client-controlled stage in

Some jobs require additional files from the client machine to be uploaded before the
user task can be started.

Uploading LOCAL files is the responsibility of the client! Make sure to read the
client documentation for more information on this topic.

To tell UNICORE/X that the client does not wish to send any local files, use the flag

"haveClientStageIn": "false",

Otherwise, the server will wait for an explicit start command (see the REST API spec for
details) before submitting / executing the user task.

Importing files into the job workspace

To import (i.e. stage in) files from remote sites to the job’s working directory on the remote UNICORE server,
there’s the Imports keyword. Here is an example of Imports section which demonstrates
some of the possibilities.

{
 "Imports": [
 {
 "From": "UFTP:https://gw:8080/DEMO-SITE/rest/core/storages/HOME/files/testfile",
 "To": "testfile"
 },
 {
 "From": "link:/work/data/testfile",
 "To": "linked-file"
 },
 {
 "From": "link:/work/data/testfile",
 "To": "copied-file"
 }
]
}

An Import can have the following elements.

{
 "From": "source-url",
 "To": "target-path",
 "FailOnError": "true | false",
 "Permissions": "unix-style-rwx-permissions",
 "Credentials": { },
 "ExtraParameters": { },
 "Mode": "overwrite | append | nooverwrite",
}

The mandatory From element is a URL denoting the source of the file(s).
UNICORE knows the following stage-in protocols:

	https:// : download a file from an HTTP(s) server (UNICORE will try to guess whether the
HTTP URL refers to a UNICORE file or not)

	file:// : copy file(s) residing on the remote machine into the job dir

	link:// : symlink a file/dir residing on the remote machine into the job dir

	ftp:// : download a file from an FTP server

	git: : download the files from the given git repository

	inline:// : ascii data is given directly, see below

The mandatory To element is the target path. As usual in UNICORE, this is relative
to the base directory of the storage endpoint, in this case the job working
directory. You can import into sub-directories, if these do not exist,
they will be created as needed.

The optional flag FailOnError lets you you control if the job
should continue even if an import operation fails. To do that, set this
flag to false:

{
 "From": "/work/data/fileName",
 "To": "fileName",
 "FailOnError": "false",
}

The optional Permissions element allows you to explicitely set file permissions.

{
 "From": "/work/data/fileName",
 "To": "myscript.sh",
 "Permissions": "r-xr--r--"
}

(An abbreviated version like “r-x” also works).

The optional Mode element has three valid options: “overwrite” (default) will simply
write the file. “append” will append if existing, and “nooverwrite” will fail if the
file already exists.

The optional Credentials element can hold e.g. a required username/password
and is discussed below.

The optional ExtraParameters element is used for protocol-specific extra settings.

Using inline data to import a file into the job workspace

For short import files, it can be convenient to place the data directly into the job description,
which can speed up and simplify the job submission process.

Here is an example:

{
 "To": "myscript.sh",
 "Data": [
 "this is some test data",
 "multi line data",
 "another line"
]
}

In this case, the From URL is not needed. If you give one, it has to start with inline://,
the rest is not important.

Make sure to properly escape any special characters.

Staging in from git

You can stage-in a git repository, optionally allowing you to choose a
particular commit, and to pass any required credentials.

For example

{
 "From": "git:https://github.com/github/testrepo.git",
 "To": "testrepo",
 "ExtraParameters": {
 "commit" : "26fc7091"
 },
 "Credentials": {
 "Password" : "some_api_token",
 "Username" : "test"
 }
}

If the git repo contains any submodules, these will be downloaded as well.

Please note that this operation will not result in a functional git repo,
only the files will be downloaded.

Sweeping over a stage-in file

You can also sweep over files, i.e. create multiple batch jobs that differ by one imported file.
To achieve this, replace the From parameter by list of values, for example:

{
 "From": [
 "https://gw:8080/DEMO-SITE/rest/core/storages/HOME/files/file1",
 "https://gw:8080/DEMO-SITE/rest/core/storages/HOME/files/file2",
 "https://gw:8080/DEMO-SITE/rest/core/storages/HOME/files/file3",
],
 "To": "fileName"
}

Note that only a single stage-in can be sweeped over in this way, and that this will not work
with files imported from your local client machine.

Exporting result files from the job workspace

To export files from the job’s working directory to remote storages, use the Exports keyword.

Note

Depending on the client, additional options exist, such as downloading files to your local
machine.

Here is an example:

{
 "Exports": [
 {
 "From": "stdout",
 "To": "https://gw:8080/DEMO-SITE/rest/core/storages/HOME/files/results/myjob/stdout"
 },
 {
 "From": "results.dat",
 "To": "https://gw:8080/DEMO-SITE/rest/core/storages/HOME/files/results/myjob/results.dat"
 },
]
}

An Export can have the following elements.

{
 "From": "file-path",
 "To": "target-URL",
 "FailOnError": "true | false",
 "Credentials": { },
 "ExtraParameters": { },
}

The mandatory To element is a URL denoting the target of the export.
UNICORE knows the following stage-out protocols:

	https:// : upload a file to an HTTP(s) server (UNICORE will try to guess whether the
HTTP URL refers to a UNICORE server or not)

	file:// : copy file(s) from the job dir to another directory on the remote machine

	ftp:// : upload a file to an FTP server

Specifying credentials for data staging

Some data staging protocols supported by UNICORE require credentials such as username and password.

To pass username and password to the server, the syntax is as follows:

{
 "From": "ftp://someserver:25/some/file",
 "To": "input_data",
 "Credentials": {
 "Username": "myname",
 "Password": "mypassword"
 }
}

and similarly for exports.

You caan specify Token value for HTTPS data transfers, which will go into
an HTTP “Authorization: Token …” header

{
 "From": "https://someserver/some/file",
 "To": "input_data",
 "Credentials": {
 "Token": "some_token"
 }
}

You may also specify an OAuth Bearer token for HTTPS data transfers,
which will go into an HTTP “Authorization: Bearer …” header

{
 "From": "https://someserver/some/file",
 "To": "input_data",
 "Credentials": {
 "BearerToken": "some_token"
 }
}

You can leave the token value empty, set to “”, if the server already has a valid Bearer token by some
other means (e.g. from the incoming job submission call).

Redirecting standard input

If you want to have your application or executable read its standard input from a file, you
can use the following

"Stdin": "filename",

then the standard input will come from the file named filename in the job working directory.

Resources

For batch jobs, you will want to control the resources allocated to your job.
If you don’t do this, UNICORE will use the default settings configured by the site.

Specifying resources

Resources are requested using a Resources section:

{
 "Resources": {

 "Queue" : "fast",
 "Runtime": "12h",
 "Nodes": "8"

 }
}

UNICORE has the following built-in resource names:

	Resource name

	Description

	Runtime

	Job runtime (wall time)
(in seconds, use “min”,
“h”, “d” for other units)

	Queue

	Batch system queue
(partition) to use

	Nodes

	Number of nodes

	TotalCPUs

	Total number of CPUs

	CPUsPerNode

	Number of CPUs per node

	GPUsPerNode

	Number of GPUs per node

	Memory

	Memory per node

	Reservation

	Reservation ID

	NodeConstraints

	Node constraints

	QoS

	Batch system QoS

	Exclusive

	Request exclusive use of
the allocated node(s)

Sites may define additional, custom resources, which you can use, too.

Specifying an accounting project

If the system you’re submitting to requires a project name for accounting purposes, you
can specify the account (or project) you want to charge the job to using the Project element:

"Project" : "my_project",

(putting the “Project” into the “Resources” element will work, too)

Miscellaneous options

Umask

The umask controls the permissions of files created by the job and any
processes that are launched from it. UNICORE’s default will usually be
“077” if not otherwise conigured. If you want to change the initial umask
value, you can use the Umask keyword, e.g.

"Umask": "022",

(the value will interpreted as an octal string)

Job tags

To set job tags that help you find / filter jobs later, use the Tags keyword

"Tags": ["production", "train1", "my_tag"],

Specifying a URL for receiving notifications

The UNICORE/X server can send out notifications when the job enters the RUNNING and/or
DONE state.

"Notification" : "https://your-service-url",

UNICORE/X will send an authenticated HTTPS POST message to this URL, with JSON content.

{
 "href" : "https://unicore-url/rest/core/jobs/job-uuid",
 "status" : "RUNNING",
 "statusMessage" : ""
}

The status field will be RUNNING when the user application starts executing, and
SUCCESSFUL / FAILED when the job has finished.

{
 "href" : "https://unicore-url/rest/core/jobs/job-uuid",
 "status" : "SUCCESSFUL",
 "statusMessage" : "",
 "exitCode" : 0
}

Do not expect realtime behaviour here, as UNICORE has a certain delay (typically 30 to 60
seconds, depending on the server configuration) until noticing job status changes on the batch
system.

If you want to verify that the sender of the notification is really UNICORE/X, you will need to
check and validate the JWT Bearer token UNICORE/X sends in the Authorization header.

Advanced notification settings (UNICORE 9.2.0 and later)

By default, UNICORE will send notifications when the job enters RUNNING state or is done, and
the status changes to SUCCESSFUL or FAILED.

For special use cases, you may need to use more detailed notification settings, for example when

	you want notifications on certain low-level (e.g. Slurm level) status changes

	you want notifications on more or other UNICORE-level status changes.

This advanced notification setup looks like this:

{
 "NotificationSettings" : {
 "URL": "https://your-service-url",
 "status": ["STAGINGOUT", "SUCCESSFUL"],
 "bssStatus": ["CONFIGURING"]
 }
}

where status is a list of UNICORE-level status strings, and bssStatus
is a list of BSS-level status strings. If status is not given explicitly,
the default (RUNNING, SUCCESSFUL, FAILED) are used.

The notifications sent by UNICORE contain the href job URL, and either
a bssStatus field, or a status, depending on what triggered the
notification message.

Specifying the job name

The job name can be set simply by

"Name": "Test job",

Specifying the user email for batch system notifications

Some batch systems support sending email upon completion of jobs. To specify
your email, use

"User email": "foo@bar.org",

[image: workflow-img] Workflow description

Introduction

This chapter provides an overview of the JSON workflow description that is supported by the
Workflow engine. It will allow you to write workflows by hand, i.e. without
using tools such as the Java or Python APIs.

After presenting all the constructs individually, several complete examples are given in
Examples.

Overview and simple constructs

The overall workflow document has the following form

{
 "inputs": {},

 "activities": {},

 "subworkflows": {},

 "transitions": [],

 "variables": [],

 "notification": "optional_notification_url",

 "tags": ["tag1", "tag2", "..."],
}

Activities, sub-workflows and transitions make up the workflow logic.

Both activities and sub-workflows are JSON maps (since UNICORE 9.0),
where the key is the unique identifier of the element. The 8.x format
of using JSON arrays with id elements is still supported.

Here is a simple example of two tasks that are to be run in a sequence:

{
 "activities": {

 "step1": {
 "job": {
 "Executable": "echo step1",
 }
 },

 "step2": {
 "job": {
 "Executable": "echo step2",
 }
 },
 },

 "transitions": [
 {"from": "step1", "to": "step2" }
]
}

The remaining elements in the workflow description are:

	inputs allows to register external files with the workflow file catalog. See Data handling.

	tags is an optional list of initial tags, that can later be used to conveniently filter the
list of workflows.

	notification (optional) denotes an URL to where UNICORE Workflow server will send a
POST notification (authenticated via a JWT token signed by the Workflow server) when the
workflow has finished processing.

Notification messages sent by the Workflow service have the following content:

{
 "href" : "workflow_url",

 "group_id": "id of the workflow or sub-workflow",

 "status": "...",

 "statusMessage": "..."
}

Both of these are analogous to their conterparts for single jobs in UNICORE.

In the next sections the elements of the workflow description will be discussed in detail.

Activities

Activity elements have the following form:

"id": {
 "type": "...",
 ...
}

The id must be UNIQUE within the workflow. There are different types of activity, which
are distinguished by the type element.

	START denotes an explicit start activity. If no such activity is present, the processing
engine detect the proper starting activities.

	JOB denotes a executable (job) activity. In this case, the job sub element holds the JSON
job definition (if a job element is present, you may leave out the type).

	MODIFY_VARIABLE allows to modify a workflow variable. An option named variable_name
identifies the variable to be modified, and an option expression holds the modification
expression in the Groovy programming language syntax (see also the variables section later).

	SPLIT: this activity can have multiple outgoing transitions. All transitions with matching
conditions will be followed. This is comparable to an “if() … if() … if()” construct in a
programming language.

	BRANCH: this activity can have multiple outgoing transitions. The transition with the
first matching condition will be followed. This is comparable to an “if() … elseif() … else()”
construct in a programming language.

	MERGE merges multiple flows without synchronising them.

	SYNCHRONIZE merges multiple flows and synchronises them.

	HOLD stops further processing of the current flow until the client explicitly sends a
continue message.

Subworkflows

The workflow description allows nested sub workflows, which have the same formal structure as
the main workflow (without the tags and inputs). There is an additional type element
that is used to distinguish the different control structure types.

{

 "id": "unique_id",

 "type": "...",

 "variables": [],

 "activities": {},

 "subworkflows": {},

 "transitions": [],

 "notification" : "optional_notification_url",

}

Job activities

Job activities are the basic executable pieces of a workflow. The embedded JSON job definition
will be sent to an execution site (UNICORE/X) for processing.

{
 "id": "unique_id",

 "type": "job",

 "job": {

 "... standard UNICORE job ...": ""

 },

 "options": { },
}

The execution site is specified by the optional Site name element in the job

{
 "id": "unique_id", "type" : "job",

 "job": {

 "Site name": "DEMO-SITE",

 },
}

Note

There is currently no form of brokering in place, it is up to the user to select an execution
site.

The job description is covered in detail in Job description format.

The processing of the job can be influenced using the (optional) options sub-element.
Currently the following options (key-value) can be used:

	IGNORE_FAILURE if set to true, the workflow engine will ignore any failure of the task
and continue processing as if the activity had been completed successfully.

Note

This has nothing to do with the exit code of the actual UNICORE job! Failure means for example
data staging failed, or no matching target system for the job could be found.

	MAX_RESUBMITS set to an integer value to control the number of times the activity will be
retried. By default, the workflow engine will re-try three times (except in those cases where
it makes no sense to retry).

For example,

{
 "id": "unique_id",

 "job" : {

 ... standard UNICORE job ...

 },

 "options": { "IGNORE_FAILURE": "true", },
}

If you need to pass on user preferences to the site, e.g. for selecting your primary group, or
choosing between multiple user IDs, you can specify this in the job element like this:

...

"job": {

 "User prefences": {
 "uid": "hpcuser21",
 "group": "hpc",
 }

}
...

where the allowed field names are role, uid, group and supplementaryGroups.

Data handling

One of the most common tasks is linking the output of one activity to another activity for
further processing. The UNICORE workflow system supports this by providing a per-workflow
file catalog, where jobs can reference files with special URIs starting with wf:.

Jobs can register outputs with the file catalog using stage-out directives, for example,

Exports: [
 { "From": "stdout", "To": "wf:step1_stdout" }
]

will register the stdout file under the name wf:step1_stdout (note that the file will not be
copied anywhere).

Later jobs can reference files from the catalog using stage-in directives, for example,

Imports: [
 { "From": "wf:step1_stdout", "To": "input_file" }
]

The workflow engine will take care of resolving the wf:... reference to the actual physical location.

Apart from registration of files in jobs, the user can also manually register files using the
inputs section of the main workflow:

"inputs": {
 "wf:input_data_1": "https://some_storage/somefile.pdf",
 "wf:input_params": "https://some_storage/parameters.txt"
}

For an example of a workflow, have a look at Simple two-step workflow with data dependency.

The Workflow REST API allows you to list (and modify) the file catalog via
the BASE/{id}/files endpoint.

Transitions and conditions

The basic flow of control in a workflow is handled using transition elements. These reference
from and to activities or subflows, and may have conditions attached. If no condition is present,
the transition is followed unconditionally, otherwise the condition is evaluated and the
transition is followed only if the condition matches (i.e. evaluates to true).

The syntax for a Transition is as follows:

{

 "from" : "from_id",

 "to" : "to_id",

 "condition": "expression"

}

The from and to elements denote activity or subworkflow id’s.

An activity can have outgoing (and incoming) transitions. In general, all outgoing transitions
(where the condition is fulfilled) will be followed. The exception is the Branch activity,
where only the first matching transition will be followed.

The optional condition element is a string-valued expression. The workflow engine offers some
pre-defined functions that can be used in these expressions. For example, you can use the exit
code of a job, or check for the existence of a file within these expressions.

	eval(expr) Evaluates the expression expr in Groovy syntax, which must evaluate to a
boolean. The expression may contain workflow variables.

	exitCodeEquals(activityID, value) Allows to compare the exit code of the UNICORE job
associated with the Activity identified by activityID to value.

	exitCodeNotEquals(activityID, value) Allows to check the exit code of the UNICORE job
associated with the Activity identified by activityID, and check that it is different from
value.

	fileExists(activityID, fileName) Checks that the working directory of the UNICORE job
associated with the given Activity contains a file fileName.

	fileLengthGreaterThanZero(activityID, fileName) Checks that the working directory of the
UNICORE job associated with the given Activity contains the named file, which has a non-zero
length.

	before(time) and after(time) check whether the current time is before or after the
given time (in yyyy-MM-dd HH:mm format).

	fileContent(activityID, fileName) Reads the content of the named file in the working
directory of the job associated with the given Activity and returns it as a string.

Using workflow variables

Workflow variables need to be declared using an entry in the variables array before they can be
used.

{

 "name": "...",

 "type": "...",

 "initial_value": "..."

}

Currently variables of type STRING, INTEGER , FLOAT and BOOLEAN are supported.

Variables can be modified using an activity of type MODIFY_VARIABLE.

For example, to increment the value of the COUNTER variable, the following Activity is used

{

 "type": "MODIFY_VARIABLE",

 "id": "incrementCounter",

 "variable_name": "COUNTER",

 "expression": "COUNTER += 1;"

}

The expression contains an expression in Groovy syntax (which is very close to Java).

The workflow engine will replace variables in job data staging sections and environment
definitions, allowing to inject variables into jobs. Examples for this mechanism will be given
in the Examples section.

Loop constructs

Apart from graphs constructed using activity and transition elements, the workflow system
supports special looping constructs, for-each, while and repeat-until, which allow to build
complex workflows.

While and repeat-until loops

These allow to loop a certain part of the workflow while (or until) a condition is met.
A while loop looks like this

{
 "id": "while_example",

 "type" : "WHILE",

 "variables" : [
 {
 "name": "C",
 "type": "INTEGER",
 "initial_value": "1",
 }
],

 "body":
 {
 "activities": {
 "task" : {
 "job": { ... }
 },
 "mod": {
 # this modifies the variable used in the 'while'
 # loop's exit condition
 "type": "MODIFY_VARIABLE",
 "variable_name": "C",
 "expression": "C++;",
 }
 },

 "transitions: [
 {"from": "task", "to": "mod"}
]
 },

 "condition": "eval(C<5)",

}

The necessary ingredients are that the loop’s body modifies the loop variable (“C” in the
example), and the exit condition eventually terminates the loop.

For a full workflow example, see While loop example using workflow variables.

Completely analogously to the while loop, a repeat-until loop is constructed, the only
syntactic difference is that the subworkflow now has a different type element:

{
 "id": "repeat_example",

 "type": "REPEAT_UNTIL",

 ...
}

Semantically, the repeat-loop will always execute the body at least once, since the condition is
checked after executing the body, while in the while case, the condition will be checked before
executing the body.

For-each loop

The for-each loop is a complex and powerful feature of the workflow system, since it allows
parallel execution of the loop body, and different ways of building the different iterations.
Put briefly, one can loop over variables (as in the while and repeat-until case), but one
can also loop over enumerated values and (most importantly) over file sets.

The basic syntax is:

{
 "id": "for_each_example",

 "type": "FOR_EACH",

 "iterator_name": "IT",

 "body": {

 },

define range to loop over

 "values": [...],

OR variables

 "variables": [...],

OR files

 "filesets": [...],

 # with optional chunking
 "chunking":

}

The iterator_name element allows to control how the loop iterator variable is to be called,
by default it is named IT.

The values element

Using value, iteration over a fixed set of strings can be defined. The main use for this is
parameter sweeps, i.e. executing the same job multiple times with different arguments or
environment variables.

"values": ["1", "2", "3",],

The following variables are set where IT is the loop iterator_name defined
in the for group as shown above:

	IT is set to the current iteration index (1, 2, 3, …)

	IT_VALUE is set to the current value

The variables element

The variables element allows to define the iteration range using one or more variables,
similar to a for-loop in a programming language.

"variables: [
 {
 "variable_name": "X",
 "type": "INTEGER",
 "start_value": "0",
 "expression": "Y++",
 "end_condition": "Y<2"
 },
 {
 "variable_name": "Y",
 "type": "INTEGER",
 "start_value": "0",
 "expression": "Y++",
 "end_condition": "Y<2"
 }
],

The sub-elements should be self-explanatory.

Note that you can use more than one variable range, allowing you to quickly create things like
parameter studies.

The following variables are set where IT is the loop iterator_name defined
in the for group as shown above:

	IT is set to the current iteration index (1, 2, 3, …)

	IT_VALUE is set to the current value

The file_sets element

This variation of the for-each loop, allows to loop over a set of files, optionally chunking
together several files in a single iteration.

The basic structure of a file set definition is this:

"file_sets": [

 {
 "base": "...",
 "include": ["..."],
 "exclude": ["..."],
 "recurse": "true|false",
 "indirection": "true|false",
},

]

The base element defines a base of the filenames, which will be resolved at runtime, and
complemented according to the include and/or exclude elements. The recurse attribute allows
to control whether the resolution should be done recursively into any subdirectories. The
indirection attribute is explained below.

For example, to recursively collect all PDF files (except two files named unused*.pdf) in a
certain directory on a storage:

"file_sets": [

 {
 "base": "https://mysite/rest/core/storages/my_storage/files/pdf/</s:Base>
 "include": ["*.pdf"],
 "exclude": ["unused1.pdf", "unused2.pdf",],
 "recurse": "true"
 }

]

The following variables are set where IT is the loop iterator_name defined
in the for group as shown above:

	IT is set to the current iteration index (1, 2, 3, …)

	IT_VALUE is set to the current full file path

	IT_FILENAME is set to the current file name (last element of the path)

Indirection

Sometimes the list of files that should be looped over is not known at workflow design time, but
will be computed at runtime. Or, you wish simply to list the files in a file, and not put them
all in your workflow description. The indirection attribute on a FileSet allows to do just that.
If indirection is set to true, the workflow engine will load the given file(s) in the
fileset at runtime, and read the actual list of files to iterate over from them. As an example,
you might have a file filelist.txt containing a list of UNICORE file URLs:

https://someserver/file1
https://someserver/fileN
...

and the fileset

{
 "indirection": "true",
 "base": "https://someserver/rest/core/storages/mystorage/files/</s:Base>
 "include": ["filelist.txt"],
}

You can have more than one file list.

Chunking

Chunking allows to group sets of files into a single iteration, for example for efficiency
reasons.

A chunk is either a certain number of files, or a set of files with a certain total size.

"chunking": {
 "chunksize": ... ,
 "type": "NORMAL|SIZE",
 "filename_format": "...,
 "expression": "... formula to compute chunksize ...",
}

The chunksize element is either the number of files in a chunk, or (if type is set to SIZE)
the total size of a chunk in kbytes.

For example,

	To process 10 files per iteration:

"chunking":
{
 "chunksize": "10",
}

	To process 2000 kBytes of data per iteration:

"chunking":
{
 "chunksize": "2000",
 "type": "SIZE"
}

The chunksize can also be computed at runtime using the expression given in the optional
expression element. In the expression, two special variables may be used. The TOTAL_NUMBER
variable holds the total number of files iterated over, while the TOTAL_SIZE variable holds
the aggregated size of all files in kbytes. The script must return an integer-valued result.
The type element is used to choose whether the chunk size is interpreted as number of files or
data size.

For example, to choose a larger chunksize if a certain total file size is exceeded:

"chunking": {
 "expression": "if(TOTAL_SIZE>50*1024)return 5*1024 else return 2048;"
 "type": "SIZE"
}

The optional filename_format allows to control how the individual files (which are staged into
the job directory) should be named. By default, the index is prepended, i.e. an import statement
like

"Imports": [{ "From": "${IT_VALUE}", "To" : "infile.txt" }]

would result in 1_infile.txt to N_infile.txt in each chunk.
In the filename_format pattern you can use the variables {0}, {1} and {2},
which denote the index, filename without extension and extension respectively.

{0} = 1, 2, 3, ...
{1} = "infile"
{2] = "txt"

For example, if you have a set of PDF files, and you want them to be
named file_1.pdf to file_N.pdf, you could use the pattern:

"filename_format": "file_{0}.pdf"

which would ignore the original filename in the To field completely.
Or, if you prefer to keep the existing extensions, but append an index to the name, use

"filename_format": "{1}{0}.{2}"

which would result in filenames like below:

inputfile1.txt
inputfile2.txt
...

You can also keep the original filenames by setting:

"Imports": [{ "From": "${IT_VALUE}", "To" : "${IT_ORIGINAL_FILENAME}"}]

The following variables are set where IT is the loop iterator_name defined
in the for group as shown above:

	IT is set to the current iteration index (1, 2, 3, …)

	IT_VALUE is set to the current full file path

	IT_ORIGINAL_FILENAME_x is set to the current file name (last element of the path)

	IT_ORIGINAL_FILENAMES is set to a “;”-separated list of all the
file names (last elements of the paths) in the current chunk

Examples

This section collects a few simple example workflows. They are intended to be submitted using
 UNICORE Commandline Client.

Simple two-step workflow with data dependency

This example shows how to link output from one task to the input of another task using
the internal file catalog.

The first task, step1, registers its stdout with the file catalog under the name
wf:step1_out, and the second task, step2, pulls that file in for further processing.

{
 "activities": {

 "step1": {
 "job": {
 "ApplicationName": "Date",
 "Exports": [
 {"From": "stdout", "To": "wf:step1_out"}
]
 }
 },

 "step2": {
 "job": {
 "Executable": "md5sum",
 "Arguments": ["infile"],
 "Imports": [
 { "From": "wf:step1_out", "To": "infile"}
]
 }
 }

 },

 "transitions": [
 {"from": "step1", "to": "step2" }
]
}

Simple diamond graph

This example shows how to use transitions for building simple workflow graphs. It consists of
four Date jobs arranged in a diamond shape, i.e. date2a and date2b are executed (more
or less) simultaneously.

{
 "activities": {

 "date1": {
 "job": { "ApplicationName": "Date" }
 },

 "date2a": {
 "job": { "ApplicationName": "Date" }
 },

 "date2b": {
 "job": { "ApplicationName": "Date" }
 },

 "date3": {
 "job": { "ApplicationName": "Date" }
 }

 },

 "transitions": [
 {"from": "date1", "to": "date2a" },
 {"from": "date1", "to": "date2b" },
 {"from": "date2a", "to": "date3" },
 {"from": "date2b", "to": "date3" }
]
}

Conditional execution in an if-else construct

Transitions from one activity to another may be conditional, which allows all sorts of if-else
constructs. Here is a simple example:

{

 "activities": {

 "branch": { "type": "BRANCH" },

 "if-job": {
 "job": { "ApplicationName": "Date" }
 },

 "else-job": {
 "job": { "ApplicationName": "Date" }
 }

 },

 "transitions": [
 {"from": "branch", "to": "if-job", "condition": "2+2==4"},
 {"from": "branch", "to": "else-job" }
]

}

Here we use the BRANCH activity which will only follow the first matching transition.

While loop example using workflow variables

The next example shows some uses of workflow variables in a while loop. The loop variable C is
copied into the job’s environment. Another possible use is to use workflow variables in data
staging sections, for example to name files.

{

 "activities":{},

 "subworkflows": {

 "while-example": {

 "type": "WHILE",

 "variables": [
 {
 "name": "C",
 "type": "INTEGER",
 "initial_value": "0"
 }
],

 "condition": "C<5",

 "body": {

 "activities": {

 "job": {
 "job": {
 "Executable": "echo",
 "Arguments": ["$TEST"],
 "Environment": ["TEST=${C}"],
 "Exports": [
 { "From": "stdout", "To": "wf:/out_${C}" }
]
 }
 },

 "mod": {
 "type": "MODIFY_VARIABLE",
 "variable_name": "C",
 "expression": "C++"
 }

 },

 "transitions": [
 {"from": "job", "to": "mod" }
]
 }

 }

 }

}

For-each loop example

The next example shows how to use the for-each loop to loop over a set of files. The jobs will
stage-in the current file. Also, the name of the current file is placed into the job environment.

{

 "subworkflows": {

 "for-example": {
 "type": "FOR_EACH",
 "iterator_name": "IT",

 "body":
 {
 "activities": {

 "job": {
 "id": "job",
 "job": {
 "Executable": "echo",
 "Arguments": ["processing: ", "$NAME"],
 "Environment": ["NAME=${IT_FILENAME}"],
 "Imports": [
 {"From": "${IT_VALUE}", "To": "infile"}
],
 "Exports": [
 {"From": "stdout", "To": "wf:/out_${IT}"}
]
 }
 }

 },

 },

 "filesets": [
 {
 "base": "https://mygateway.de:7700/MYSITE/rest/core/storages/my_storage/",
 "include": ["*"],
 }
]

 }

 }

}

[image: data-triggered-img] Data-triggered processing

This document describes UNICORE’s data-triggered, rule-oriented processing feature.

What is data-triggered processing?

UNICORE can be set up to automatically scan storages and trigger processing
steps (e.g. submit batch jobs or run processing tasks) according to
user-defined rules.

This style of processing is storage-oriented, i.e. is defined by the properties
of a UNICORE storage endpoint, and by files accessible on that storage endpoint.

Setting up data-triggered processing

Depending on the server configuration, data triggered processing is probably disabled
on the standard storages (HOME, ROOT, etc).

If the UNICORE server provides a “storage factory” service, you can create
an endpoint with data-triggered processing enabled, and you can select the path

For example using UCC:

ucc create-storage path=/path/to/your/directory enableTrigger=true

Controlling the scanning process

To control which directories should be scanned, a file named .UNICORE_Rules
at the top-level of the storage is read and evaluated. This file can be (and
usually will be) edited and uploaded by the user. It can be modified at any time.

The file is expected to be in JSON format, and has the following elements:

{
 "DirectoryScan": {

 "IncludeDirs": [
 "project.*"
],
 "ExcludeDirs": [
 "project42"
],
 "Interval": "30"

 },

 "Rules": [],

 "Enabled": "true | false",

 "Logging": "true | false"

}

The IncludeDirs and ExcludeDirs are lists of Java regular expression strings that denote
directories (as always relative to the storage root) that should be included or excluded from
the scan.

The optional Interval element allows you to control the scan interval. A numerical value (seconds),
or a time value with unit such as “1h” can be used here.

The optional Enabled element allows you to (temporarily) disable the processing,
if you wish.

The optional Logging element allows you to disable the writing of log files.
Logging is enabled by default, see below. Log files will be written to a directory
.UNICORE_data_processing in the base directory of the storage endpoint.

The Rules section controls which files are to be processed, and what is to
be done (actions). This is described below.

Rules

The Rules section in the .UNICORE_Rules file is a list
of file match specifications together with a definition of
an action, i.e. what should be done for those files that match.

The general syntax is:

{
 "DirectoryScan": {
 "IncludeDirs": [],
 "ExcludeDirs": []
 },

 "Rules": [
 {
 "Name": "example",
 "Match": ".*incoming/file_.*",
 "Action": { }
 }
]
}

The mandatory elements are:

	Name : the name of the rule. This is useful when checking the logfiles.

	Match : a regular expression defining which file paths (relative to
storage root) should be processed.

	Action : the action to be taken.

Variables

The following variables can be used in the Action description:

	UC_BASE_DIR : the storage root directory

	UC_CURRENT_DIR : the absolute path to the parent directory of the current file

	UC_FILE_PATH : the full path to the current file

	UC_FILE_NAME : the file name

	UC_FILES : (batched actions only) all the newly detected files, relative to the base directory

Job action

This type of action will be executed for a single new file, and
defines a UNICORE job in the usual job description syntax.

"Action":
{
 "Job": { ... }
}

The Job element contains a UNICORE job in the
usual job description syntax.

Batched job action

This type of action will be executed for a whole set of newly detected files.

"Action":
{
 "BatchedJob": { ... }
}

The BatchedJob element contains a UNICORE job in the
usual job description syntax.

Metadata extraction

"Action":
{
 "Extract": { ... }
}

This action will extract metadata from all the newly detected files.
The contents of the Extract element are currently unused.

Sending notifications

"Action":
{
 "Notification": "https://url-to-notification-receiver"
}

This action will send out a HTTP POST request in JSON format to the specified URL.
The JSON will contain information about the new files, as well as the base directory
that is being watched.

An example notification could look like this:

{
 "href": "https://unicorex-server-url/rest/core",
 "directory": "/path/to/watched/directory",
 "files": [
 "/path-to-new-file1",
 "/path-to-new-file2"
]
}

(File paths are relative to the base directory!)

Logging

If new files are detected, and rules are executed, the server will write a short log file
to a directory “.UNICORE_data_processing”.

Stopping the processing

Since data-triggered processing is tied to the storage instance, you can stop
it by sending an empty REST POST to an URL on the storage, e.g.

ucc rest post "{}" 'storage-URL'/actions/stop-processing

Destroying the storage instance will also stop the processing
(but not delete any files).

ucc rest delete "{}" 'storage-URL'

Example

As an example, we setup a task that generates checksums for all new files
that are detected in the incoming directory.

The .UNICORE_Rules file could look like this:

{
 "DirectoryScan": {
 "IncludeDirs": [
 "incoming"
],
},

 "Rules": [
 {
 "Name": "generate-hash",
 "Match": ".*",
 "Action": {
 "Job": {
 "Executable": "sha256sum ${UC_FILE_PATH}",
 "Exports": [
 {
 "From": "stdout",
 "To": "file://${UC_BASE_DIR}/checksums/${UC_FILE_NAME}.sha"
 }
]
 }
 }
 }
]
}

Gateway

The UNICORE Gateway is an (optional) server component that
provides a reverse https proxy, allowing you to run several backend
servers (UNICORE/X, Registry, …) behind a single address.
This helps with firewall configuration, requiring only a single open port
(a similar effect can be achieved using other http servers that can
act as a reverse proxy, such as Apache httpd [https://httpd.apache.org/]
or nginx [https://nginx.org]).

The second functionality of the Gateway is (optional) authentication
of incoming requests. Connections to the Gateway are made using SSL,
so the Gateway can be configured to check whether the caller presents
a certificate issued by a trusted authority. Information about the
client is forwarded to services behind the Gateway in UNICORE
proprietary format (as a HTTP header).

The Gateway will forward the IP address of the client to the back-end
server.

Last not least, the Gateway can be configured as a HTTP load balancer.

[image: UNICORE Gateway Server]

Fig. 5 UNICORE Gateway Server

	[image: user-guide-img] Gateway Manual
	Installation and Operating the Gateway.

[image: user-guide] Gateway Manual

The Gateway is the entry point into a UNICORE site, routing HTTPS
traffic to servers like UNICORE/X. It forwards client traffic to the
intended destination, optionally authenticating the client. The
Gateway receives the reply and sends it back to the client. In this
way, only a single open port in a site’s firewall has to be
configured.

Attention

LIMITATIONS

The Gateway is not a complete HTTP reverse proxy implementation. For
example, it is not possible to run a full, complex web application
behind the Gateway, especially not if protocols like WebSocket are
used.

In effect, traffic to a virtual URL, e.g.
https://mygateway:8088/Alpha is forwarded to the real URL, e.g.
https://host1:7777.

The mappings of virtual URL to real URL for the available sites are
listed in a configuration file connections.properties.
Additionally, the Gateway supports dynamic registration of sites.

The second functionality of the Gateway is (optional) authentication
of incoming requests. Connections to the Gateway are made using SSL,
so the Gateway can be configured to check whether the caller presents
a certificate issued by a trusted authority. Information about the
client is forwarded to services behind the Gateway in UNICORE proprietary
format (as a SOAP or HTTP header).

The Gateway will forward the IP address of the client to the back-end server.

Last not least, the Gateway can be configured as a HTTP load balancer.

Important

IMPORTANT NOTE ON PATHS

Depending on the installation method, the paths to various Gateway files
are different. If installing using a distribution-specific package the
following paths are used:

CONF=/etc/unicore/gateway
BIN=/usr/sbin
LOG=/var/log/unicore/gateway

If installing using the portable bundle all Gateway files are installed
under a single directory. Path prefixes then are as follows, where INST
is a directory where the Gateway was installed:

CONF=INST/conf
BIN=INST/bin
LOG=INST/logs

The above variables (CONF, BIN and LOG) are used throughout the rest of
this manual.

[image: install-img] Installation

The UNICORE Gateway is distributed in the following formats:

	As a part of platform independent installation bundle called
UNICORE Server bundle [https://sourceforge.net/projects/unicore/files/Servers/Core/].
The UNICORE Server bundle is provided as a tar package and includes a command line installer.

	As a binary, platform-specific package available currently for
RedHat (Centos) and Debian platforms on the
UNICORE project website [https://sourceforge.net/p/unicore/wiki/Linux_Repositories/]
at sourceforge. Those packages are not tested
on all possible platforms, but should work without any problems with
other versions of similar distributions, e.g. SL, Centos, or Fedora.

Prerequisites

To run, the Gateway requires Java (JRE headless is sufficient) in
version 11 or later. We recommend using
OpenJDK [https://openjdk.java.net/install/].

Installation from the Server bundle

Download the server bundle [https://sourceforge.net/projects/unicore/files/Servers/Core/]
from the UNICORE project website.

Please review the README file available after extracting the
bundle. You don’t have to change any defaults as the Gateway is
installed by default.

You should create and use a system user (e.g. unicore) to install
and run the gateway. For security reasons, do not run the Gateway as
the root user.

Installation from a Linux package (rpm or deb)

Use your distribution’s package manager to install.

[image: update-img] Upgrading

The general update procedure is presented below, with possible variations:

	Stop the old Gateway.

	Update the server package. This step mostly applies for RPM/DEB managed installations.
For Quickstart installation it is enough to replace the *.jar files with the new ones.

	Start the newly installed Gateway.

	Verify log file and fix any problems reported.

[image: config-img] Configuration

The Gateway is configured using a set of configuration files, which
reside in the CONF subdirectory.

Java and environment settings: startup.properties

This file contains settings related to the Java VM, such as the Java command
to use, memory settings, library paths, etc.

Configuring sites: connections.properties

This is a simple list connecting the names of sites and their physical addresses.
An example is:

DEMO-SITE = https://localhost:7777
REGISTRY = https://localhost:7778

If this file is modified, the Gateway will re-read it at runtime, so there is no need to
restart the Gateway in order to add or remove sites.

Optionally, an administrator can enable a possibility for dynamic site registration at runtime,
see Dynamic registration of Vsites for details. Then this file should contain only the
static entries (or none if all sites register dynamically).

Further options for back-end sites configuration are presented in
 Using the Gateway for failover and/or loadbalancing of UNICORE sites.

Main server settings: gateway.properties

Use the gateway.hostname property to configure the network interface and
port the Gateway will listen on. You can also select between https and http protocol,
though in almost all cases https will be used.

Example:

gateway.hostname = https://192.168.100.123:8080

Note

If you set the host to 0.0.0.0, the Gateway will listen on all network interfaces
of the host machine, else it will listen only on the specified one.

If the scheme of the hostname URL is set to https, the Gateway uses the configuration
data from security.properties to configure the HTTPS settings.

Credential and truststore settings

The Gateway credential and truststore is configured using the following properties

Table 13 Credential settings

	Property name

	Type

	Default value / mandatory

	Description

	gateway.credential.path

	filesystem path

	
mandatory

	Credential location. In case of ‘jks’, ‘pkcs12’ and ‘pem’ store it is the only location required. In case when credential is provided in two files, it is the certificate file path.

	gateway.credential.format

	[jks, pkcs12, der, pem]

	
	Format of the credential. It is guessed when not given. Note that ‘pem’ might be either a PEM keystore with certificates and keys (in PEM format) or a pair of PEM files (one with certificate and second with private key).

	gateway.credential.password

	string

	
	Password required to load the credential.

	gateway.credential.keyPath

	string

	
	Location of the private key if stored separately from the main credential (applicable for ‘pem’ and ‘der’ types only),

	gateway.credential.keyPassword

	string

	
	Private key password, which might be needed only for ‘jks’ or ‘pkcs12’, if key is encrypted with different password then the main credential password.

	gateway.credential.keyAlias

	string

	
	Keystore alias of the key entry to be used. Can be ignored if the keystore contains only one key entry. Only applicable for ‘jks’ and ‘pkcs12’.

	gateway.credential.reloadOnChange

	[true, false]

	true

	Monitor credential location and trigger dynamical reload if file changes.

Table 14 Truststore settings

	Property name

	Type

	Default value / mandatory

	Description

	gateway.truststore.allowProxy

	[ALLOW, DENY]

	ALLOW

	Controls whether proxy certificates are supported.

	gateway.truststore.type

	[keystore, openssl, directory]

	
mandatory

	The truststore type.

	gateway.truststore.updateInterval

	integer number

	600

	How often the truststore should be reloaded, in seconds. Set to negative value to disable refreshing at runtime.(runtime updateable)

	gateway.truststore.directoryConnectionTimeout

	integer number

	15

	Connection timeout for fetching the remote CA certificates in seconds.

	gateway.truststore.directoryDiskCachePath

	filesystem path

	
	Directory where CA certificates should be cached, after downloading them from a remote source. Can be left undefined if no disk cache should be used. Note that directory should be secured, i.e. normal users should not be allowed to write to it.

	gateway.truststore.directoryEncoding

	[PEM, DER]

	PEM

	For directory truststore controls whether certificates are encoded in PEM or DER. Note that the PEM file can contain arbitrary number of concatenated, PEM-encoded certificates.

	gateway.truststore.directoryLocations.*

	list of properties with a common prefix

	
	List of CA certificates locations. Can contain URLs, local files and wildcard expressions.(runtime updateable)

	gateway.truststore.keystoreFormat

	string

	
	The keystore type (jks, pkcs12) in case of truststore of keystore type.

	gateway.truststore.keystorePassword

	string

	
	The password of the keystore type truststore.

	gateway.truststore.keystorePath

	string

	
	The keystore path in case of truststore of keystore type.

	gateway.truststore.opensslNewStoreFormat

	[true, false]

	false

	In case of openssl truststore, specifies whether the trust store is in openssl 1.0.0+ format (true) or older openssl 0.x format (false)

	gateway.truststore.opensslNsMode

	[GLOBUS_EUGRIDPMA, EUGRIDPMA_GLOBUS, GLOBUS, EUGRIDPMA, GLOBUS_EUGRIDPMA_REQUIRE, EUGRIDPMA_GLOBUS_REQUIRE, GLOBUS_REQUIRE, EUGRIDPMA_REQUIRE, EUGRIDPMA_AND_GLOBUS, EUGRIDPMA_AND_GLOBUS_REQUIRE, IGNORE]

	EUGRIDPMA_GLOBUS

	In case of openssl truststore, controls which (and in which order) namespace checking rules should be applied. The ‘REQUIRE’ settings will cause that all configured namespace definitions files must be present for each trusted CA certificate (otherwise checking will fail). The ‘AND’ settings will cause to check both existing namespace files. Otherwise the first found is checked (in the order defined by the property).

	gateway.truststore.opensslPath

	filesystem path

	/etc/grid-security/certificates

	Directory to be used for opeenssl truststore.

	gateway.truststore.crlConnectionTimeout

	integer number

	15

	Connection timeout for fetching the remote CRLs in seconds (not used for Openssl truststores).

	gateway.truststore.crlDiskCachePath

	filesystem path

	
	Directory where CRLs should be cached, after downloading them from remote source. Can be left undefined if no disk cache should be used. Note that directory should be secured, i.e. normal users should not be allowed to write to it. Not used for Openssl truststores.

	gateway.truststore.crlLocations.*

	list of properties with a common prefix

	
	List of CRLs locations. Can contain URLs, local files and wildcard expressions. Not used for Openssl truststores.(runtime updateable)

	gateway.truststore.crlMode

	[REQUIRE, IF_VALID, IGNORE]

	IF_VALID

	General CRL handling mode. The IF_VALID setting turns on CRL checking only in case the CRL is present.

	gateway.truststore.crlUpdateInterval

	integer number

	600

	How often CRLs should be updated, in seconds. Set to negative value to disable refreshing at runtime.(runtime updateable)

	gateway.truststore.ocspCacheTtl

	integer number

	3600

	For how long the OCSP responses should be locally cached in seconds (this is a maximum value, responses won’t be cached after expiration)

	gateway.truststore.ocspDiskCache

	filesystem path

	
	If this property is defined then OCSP responses will be cached on disk in the defined folder.

	gateway.truststore.ocspLocalResponders.<NUMBER>

	list of properties with a common prefix

	
	Optional list of local OCSP responders

	gateway.truststore.ocspMode

	[REQUIRE, IF_AVAILABLE, IGNORE]

	IF_AVAILABLE

	General OCSP ckecking mode. REQUIRE should not be used unless it is guaranteed that for all certificates an OCSP responder is defined.

	gateway.truststore.ocspTimeout

	integer number

	10000

	Timeout for OCSP connections in miliseconds.

	gateway.truststore.revocationOrder

	[CRL_OCSP, OCSP_CRL]

	OCSP_CRL

	Controls overal revocation sources order

	gateway.truststore.revocationUseAll

	[true, false]

	false

	Controls whether all defined revocation sources should be always checked, even if the first one already confirmed that a checked certificate is not revoked.

Scalability settings

To fine-tune the operational parameters of the embedded Jetty server, you can set
advanced HTTP server parameters (see HTTP server settings for details).
Among others you can use the non-blocking IO connector offered by Jetty,
which will scale up to higher numbers of concurrent connections than the default connector.

The Gateway acts as a https client for the VSites behind it.
The number of concurrent calls is limited, and controlled by two parameters:

maximum total number of concurrent calls to Vsites
gateway.client.maxTotal=100
total number of concurrent calls per site
gateway.client.maxPerService=20

You can also control the limit on the maximum SOAP header size which
is allowed by the Gateway. Typically you don’t have to touch this
parameter. However, if your clients do produce very big SOAP headers
and the Gateway blocks them, you can increase the limit. Note that
such a giant SOAP header usually means that the client is not behaving
as intended, e.g. is trying to perform a DoS attack.

maximum size of an accepted SOAP header, in bytes
gateway.soapMaxHeader=102400

Note

The Gateway may consume this amount of memory (plus some extra amount
for other data) for each opened connection. Therefore, this value multiplied by
the number of maximum allowed connections, should be significantly lower, then the total
memory available for the Gateway.

Dynamic registration of Vsites

Dynamic registration is controlled by three properties in CONF/gateway.properties file:

gateway.registration.enable=true
gateway.registration.secret=<your secret>

If set to true, the Gateway will accept dynamic registrations which are made by
sending a HTTP POST request to the URL /VSITE_REGISTRATION_REQUEST.
This request must contain a parameter secret which matches the
value configured in the gateway.properties file.

Filters can be set to forbid access of certain hosts, or to require certain strings
in the Vsite addresses. For example,

gateway.registration.deny=foo.org example.org

will deny registration if the remote hostname contains foo.org or example.org.
Conversely,

gateway.registration.allow=mydomain.org

will only accept registrations if the remote address contains mydomain.org.
These two (deny and allow) can be combined.

Web interface (monkey page)

For testing and simple monitoring purposes, the Gateway displays a
website showing detailed site information (the details view can be
disabled). Once the Gateway is running, open up a browser and
navigate to https://<gateway_host>:8080 (or whichever URL the gateway
is running on). If the Gateway is configured to do SSL
authentication, you will need to import a suitable client certificate
into your web browser.

A HTML form for testing the dynamic registration is available as well,
by clicking the link in the footer of the main Gateway page.

To disable the Vsite details page, set

gateway.disableWebpage=true

Main options reference

	Property name

	Type

	Default value / mandatory

	Description

	gateway.acme.enable

	[true, false]

	false

	Enable ACME / Let’s Encrypt support. Will add a HTTP listener on the port defined the acme.httpPort property.

	gateway.acme.httpPort

	integer >= 1

	80

	Port for the plain HTTP listener.

	gateway.acme.tokenDirectory

	string

	./acme

	Directory from which to serve Let’s Encrypt / ACME tokens.

	gateway.hostname

	string

	
mandatory

	external gateway bind address

	gateway.registration.allow

	string

	
	Space separated list of allowed hosts for dynamic registration.

	gateway.registration.deny

	string

	
	Space separated list of denied hosts for dynamic registration.

	gateway.registration.enable

	[true, false]

	false

	Whether dynamic registration of sites is enabled.

	gateway.registration.secret

	string

	
	Required secret for dynamic registration.

	gateway.soapMaxHeader

	string

	
	DEPRECATED, no effect

	gateway.consignorTokenTimeTolerance

	integer >= 0

	30

	The validity time of the authenticated client information passed to backend sites will start that many seconds before the real authentication. It is used to mask time synchronization problems between machines.

	gateway.consignorTokenValidity

	integer >= 1

	60

	What is the validity time of the authenticated client information passed to backend sites. Increase it if there machines clocks are not synhronized.

	gateway.signConsignorToken

	[true, false]

	false

	Controls whether information about the authenticated client (the consignor) passed to backend sites should be signed, or not. Signing is slower, but is required when sites may be reached directly, bypassing the Gateway.

	gateway.client.chunked

	[true, false]

	true

	Controls whether chunked passing of HTTP requests to backend sites is supported.

	gateway.client.connectionTimeout

	integer number

	30000

	Connection timeout, used when connecting to backend sites.

	gateway.client.expectContinue

	[true, false]

	true

	Controls whether the HTTP expect-continue mechanism is enabled on connections to backend sites.

	gateway.client.gzip

	[true, false]

	true

	Controls whether support for compression is announced to backend sites.

	gateway.client.keepAlive

	[true, false]

	true

	Whether to keep alive the connections to backend sites.

	gateway.client.maxPerService

	integer number

	20

	Maximum allowed number of connections per backend site.

	gateway.client.maxTotal

	integer number

	100

	Maximum total number of connections to backend sites allowed.

	gateway.client.socketTimeout

	integer number

	30000

	Connection timeout, used when connecting to backend sites.

	gateway.disableWebpage

	[true, false]

	false

	Whether the (so called monkey) status web page should be disabled.

	gateway.externalHostname

	string

	null

	External address of the gateway, when it is accessible through a frontend server as Apache HTTP.

HTTP server settings

	Property name

	Type

	Default value / mandatory

	Description

	gateway.httpServer.CORS_allowedHeaders

	string

	*

	CORS: comma separated list of allowed HTTP headers (default: any)

	gateway.httpServer.CORS_allowedMethods

	string

	GET,PUT,POST,DELETE,HEAD

	CORS: comma separated list of allowed HTTP verbs.

	gateway.httpServer.CORS_allowedOrigins

	string

	*

	CORS: allowed script origins.

	gateway.httpServer.CORS_chainPreflight

	[true, false]

	false

	CORS: whether preflight OPTION requests are chained (passed on) to the resource or handled via the CORS filter.

	gateway.httpServer.CORS_exposedHeaders

	string

	Location,Content-Type

	CORS: comma separated list of HTTP headers that are allowed to be exposed to the client.

	gateway.httpServer.disabledCipherSuites

	string

	empty string

	Space separated list of SSL cipher suites to be disabled. Names of the ciphers must adhere to the standard Java cipher names, available here: http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SupportedCipherSuites

	gateway.httpServer.enableCORS

	[true, false]

	false

	Control whether Cross-Origin Resource Sharing is enabled. Enable to allow e.g. accesing REST services from client-side JavaScript.

	gateway.httpServer.enableHsts

	[true, false]

	false

	Control whether HTTP strict transport security is enabled. It is a good and strongly suggested security mechanism for all production sites. At the same time it can not be used with self-signed or not issued by a generally trusted CA server certificates, as with HSTS a user can’t opt in to enter such site.

	gateway.httpServer.enableSNI

	[true, false]

	false

	Enable Server Name Indication (SNI)

	gateway.httpServer.fastRandom

	[true, false]

	false

	Use insecure, but fast pseudo random generator to generate session ids instead of secure generator for SSL sockets.

	gateway.httpServer.gzip.enable

	[true, false]

	false

	Controls whether to enable compression of HTTP responses.

	gateway.httpServer.gzip.minGzipSize

	integer number

	100000

	Specifies the minimal size of message that should be compressed.

	gateway.httpServer.highLoadConnections

	string

	
	DEPRECATED, no effect

	gateway.httpServer.lowResourceMaxIdleTime

	string

	
	DEPRECATED, no effect

	gateway.httpServer.maxConnections

	integer >= 0

	0

	Maximum number of incoming connections to this server. If set to a value larger than 0, incoming connections will be limited to that number. Default is 0 = unlimited.

	gateway.httpServer.maxIdleTime

	integer >= 1

	200000

	Time (in ms.) before an idle connection will time out. It should be large enough not to expire connections with slow clients, values below 30s are getting quite risky.

	gateway.httpServer.maxThreads

	integer number

	255

	Maximum number of threads to have in the thread pool for processing HTTP connections. Note that this number will be increased with few additional threads to handle connectors.

	gateway.httpServer.minThreads

	integer >= 1

	1

	Minimum number of threads to have in the thread pool for processing HTTP connections. Note that this number will be increased with few additional threads to handle connectors.

	gateway.httpServer.requireClientAuthn

	[true, false]

	true

	Controls whether the SSL socket requires client-side authentication.

	gateway.httpServer.useNIO

	string

	
	DEPRECATED, no effect

	gateway.httpServer.wantClientAuthn

	[true, false]

	true

	Controls whether the SSL socket accepts (but does not require) client-side authentication.

	gateway.httpServer.xFrameAllowed

	string

	http://localhost

	URI origin that is allowed to embed web interface inside a (i)frame. Meaningful only if the xFrameOptions is set to ‘allowFrom’. The value should be in the form: ‘http[s]://host[:port]’

	gateway.httpServer.xFrameOptions

	[deny, sameOrigin, allowFrom, allow]

	deny

	Defines whether a clickjacking prevention should be turned on, by insertionof the X-Frame-Options HTTP header. The ‘allow’ value disables the feature. See the RFC 7034 for details. Note that for the ‘allowFrom’ you should define also the xFrameAllowed option and it is not fully supported by all the browsers.

Require end-user certificates

Using client certificates for end-user authentication are not required
or recommended. If you still want to require end-users to have a
certificate, the Gateway can be configured accordingly.
Set the following in gateway.properties:

gateway.httpServer.requireClientAuthn=true

Logging

UNICORE uses Log4j (version 2) as its logging framework, and
comes with an example configuration file (CONF/logging.properties).

Please refer to the Log4j documentation [https://logging.apache.org/log4j/2.x/manual/configuration.html]
for more information.

The most important, root log categories used by the Gateway’s logging are:

	unicore.gateway

	General Gateway logging

	unicore.security

	Certificate details and
other security

	org.apache.http

	Outgoing HTTP to the
backend services

[image: apache-img] Using Apache httpd as a frontend

You may wish to use the Apache webserver (httpd) as a
frontent for the Gateway (e.g. for security or fault-tolerance reasons).

Requirements

	Apache httpd [https://httpd.apache.org/]

	mod_proxy [https://httpd.apache.org/docs/2.4/mod/mod_proxy.html] for Apache httpd

External references

	https://wiki.eclipse.org/Jetty/Howto/Configure_mod_proxy

[image: load-balance-img] Using the Gateway for failover and/or loadbalancing of UNICORE sites

The Gateway can be used as a simple failover solution and/or loadbalancer to achieve
high availability and/or higher scalability of UNICORE/X sites without additional tools.

A site definition (in CONF/connections.properties) can be extended, so that multiple physical
servers are used for a single virtual site.

An example for such a so-called multi-site declaration in the connections.properties file
looks as follows:

#declare a multisite with two physical servers

MYSITE=multisite:vsites=https://localhost:7788 https://localhost:7789

This will tell the Gateway that the virtual site MYSITE is indeed a multi-site with the
two given physical sites.

Configuration

Configuration options for the multi-site can be passed in two ways. On the one hand they can
go into the connections.properties file, by putting them in the multi-site definition, separated
by ; characters:

#declare a multisite with parameters

MYSITE=multisite:param1=value1;param2=value2;param3=value3;...

The following general parameters exist:

	vsites

	List of physical sites

	strategy

	Class name of the site selection
strategy to use (see below)

	config

	Name of a file containing
additional parameters

Using the config option, all the parameters can be placed in a separate file for enhanced
readability. For example, you could define in connections.properties:

#declare a multisite with parameters read from a separate file

MYSITE=multisite:config=conf/mysite-cluster.properties

and give the details in the file conf/mysite-cluster.properties:

#example multisite configuration
vsites=https://localhost:7788 https://localhost:7789

#check site health at most every 5 seconds
strategy.healthcheck.interval=5000

Available strategies

A selection strategy is used to decide where a client request will
be routed. By default, the strategy is “Primary with fallback”, i.e. the request
will go to the first site if it is available, otherwise it will go to the second site.

Primary with fallback

This strategy is suitable for a high-availability scenario, where a secondary site takes over
the work in case the primary one goes down for maintenance or due to a problem. This is the
default strategy, so nothing needs to be configured to enable it. If you want to explicitely
enable it anyway, set

strategy=primaryWithFallback

The strategy will select from the first two defined physical sites. The first, primary one will
be used if it is available, else the second one. Health check is done on each request, but not
more frequently as specified by the strategy.healthcheck.interval parameter. By default, this parameter
is set to 5000 milliseconds.

Changes to the site health will be logged at INFO level, so you can see when the sites go up or down.

Round robin

This strategy is suitable for a load-balancing scenario, where a random site will be chosen from
the available ones. To enable it, set

strategy=roundRobin

Changes to the site health will be logged at INFO level, so you can see when the sites go up or down.

It is very important to be aware that this strategy requires that all backend sites used in the pool,
share a common persistence. It is because Gateway does not track clients, so particular client requests
may land at different sites. This is typically solved by using a non-default, shared database for sites,
such as MySQL.

Caution

Currently loadbalancing of target sites is an experimental feature and is not yet fully functional.
It will be improved in future UNICORE versions.

Custom strategy

You can implement and use your own failover strategy, in this case, use the name of the Java class as
strategy name:

strategy=your_class_name

[image: failover-img] Gateway failover and migration

The Using the Gateway for failover and/or loadbalancing of UNICORE sites covered usage of the Gateway to provide failover of backend services.
However, it may be needed to guarantee high-availabilty for the Gateway itself or to move it
to other machine in case of the original one’s failure.

Gateway’s migration

The Gateway does not store any state information, therefore its migration is easy.
It is enough to install the Gateway at the target machine (or even to simply copy
it in the case of installation from the core server bundle) and to make sure that
the original Gateway’s configuration is preserved.

If the new machine uses a different address, it needs to be reflected in the
server’s configuration file (the listen address). Also, the
configuration of sites behind the Gateway must be updated accordingly.

Failover and loadbalancing of the Gateway

Gateway itself doesn’t provide any features related to its own redundancy. However, as it
is stateless, the standard redundancy solutions can be used.

The simpliest solution is to use Round Robin DNS, where DNS server routes the Gateway’s DNS
address to a pool of real IP addresses. While easy to set up this solution has a
significant drawback: DNS server doesn’t care about machines being down.

UNICORE/X

UNICORE/X is the central component of a typical UNICORE installation,
providing REST APIs for job management and data access services
for a single compute cluster (or just a file system).

[image: UNICORE/X Server]

Fig. 6 UNICORE/X Server

	[image: user-guide-img] UNICORE/X Manual
	Installation and Operating the UNICORE/X server.

	[image: update-img] UNICORE/X Update
	Update a UNICORE/X server to this version.

[image: user-guide-img] UNICORE/X Manual

The UNICORE/X server is the central component of a UNICORE site.
It hosts the services such as job submission, job management,
storage access, and provides the bridge to the functionality
of the target resources, e.g. batch systems or file systems.

For more information about UNICORE visit
https://www.unicore.eu.

[image: start-img] Getting started

Prerequisites

To run UNICORE/X, you need Java (OpenJDK, Oracle or IBM).
We recommend using the latest version of the OpenJDK.
If not installed on your system, you can download it from
https://openjdk.java.net/install/.

UNICORE/X has been developed and most extensively tested on Linux-like
systems, but runs on MacOS/X as well.

Please note that

	to integrate into secure production environments, you will need
access to a certificate authority and generate certificates for
all your UNICORE servers.

	to interface with a resource management system like Slurm or SGE,
you need to install and configure the UNICORE TSI server.

	to make your resources easily accessible outside of your firewalls,
you should setup and configure a UNICORE Gateway.

All these configuration options will be explained in the manual below.

Installation

UNICORE/X can be installed either as a part of the UNICORE Server bundle [https://sourceforge.net/projects/unicore/files/Servers/Core/] (tar.gz or zip archive)
or from a Linux package (i.e. RPM or deb) on the UNICORE project website [https://sourceforge.net/p/unicore/wiki/Linux_Repositories/] at sourceforge.

To install from the tar.gz or zip archive, unpack the archive in a
directory of your choice. You should then review the config files
in the conf/ directory, and adapt paths, hostname and ports.
The config files are commented, and you can also
check Configuration of UNICORE/X.

To install from a Linux package, please use the package manager of your
system to install the archive.

Note

Using the Linux packages, you can install only a single UNICORE/X instance per machine (without
manual changes). The tar.gz / zip archives are self contained, and you can easily install
multiple servers per machine.

The following table gives an overview of the file locations for both tar.gz and Linux bundles:

	Name
in
this
manual

	tar.gz, zip

	rpm

	Description

	CONF

	<basedir>/conf/

	/etc/unicore/
unicorex

	Config
files

	LIB

	<basedir>/lib/

	/usr/share/unicore
/unicorex/lib

	Java
libraries

	LOG

	<basedir>/log/

	/var/log/unicore
/unicorex/

	Log files

	BIN

	<basedir>/bin/

	/usr/sbin/

	Start/stop
scripts

Starting/Stopping

There are two scripts that expect to be run from the installation directory. To start, do:

$ cd <basedir>
$ bin/start.sh

Startup can take some time. After a successful start, the log files (e.g. LOG/startup.log)
contain a message “Server started.” and a report on the status of any connections to
other servers (e.g. the TSI or global registry).

To stop the server, do:

$ cd <basedir>
$ bin/stop.sh

Using systemd on Linux, you would do (as root):

$ systemctl start unicore-unicorex.service

Log files

UNICORE/X writes its log file(s) to the LOG directory. By default, log files are rolled daily,
There is no automated removal of old logs, if required you will have to do this yourself.

Details about the logging configuration are given in Logging.

[image: config-img] Configuration of UNICORE/X

Overview of the main configuration options

UNICORE/X is the central component in a UNICORE system and as such has
a number of interfaces to other UNICORE components, as well as many of
configuration options. This section gives an overview of what can and
should be configured. The detailed configuration guide follows in the
next sections.

Mandatory configuration

	SSL certificates and basic security: UNICORE uses SSL certificates for all servers.
For UNICORE/X these settings are made in the container.properties config file.

	Attribute sources: various ways are available to assign local
attributes to users, such as Unix user name, groups and role. For
details, please refer to the Attribute sources.

	Backend / target system access: to access a resource manager like Slurm, the
UNICORE TSI needs to be installed and UNICORE/X needs to be configured accordingly. Please
see Interfacing UNICORE/X to the TSI.

	You can choose to enable/disable certain UNICORE features, for example if you
wish to set up a storage-only UNICORE server. Please refer to Features provided by UNICORE/X.

UNICORE/X is configured using several config files residing in the
CONF directory, please see Getting started for the location of the CONF
directory.

Config file overview

The following table indicates the main configuration files. Depending on
configuration and installed extensions, some of these files may not be present, or
more files may be present.

UNICORE/X watches some configuration files for changes, and tries to reconfigure
if they are modified, at least where possible. This is indicated in the
dynamically reloaded column.

Table 15 UNICORE/X configuration files

	config file

	usage

	dynamically reloaded

	startup.properties

	Java process settings (e.g. memory),
lib/log/conf directories

	no

	logging.properties

	Logging levels, logfiles and their
properties

	yes

	main.config

	Main server config file. Defines
features, storages, AuthN/AuthZ,
AIPs/PDPs

	no

	container.properties

	Server address, SSL settings, Web
server settings

	no

	tsi.config

	Configuration to access the TSI

	no

	simpleidb

	Backend, installed applications,
resources

	yes

	simpleuudb

	Maps user DNs to local attributes
(optional)

	yes

	rest-users.txt

	Usernames/passwords for REST
authentication (optional)

	yes

	xacml2Policies/*.xml

	Access control policy for securing the
web services

	yes, via xacml2.config (do
touch xacml2.config to
trigger)

	xacml2.config

	Configure the XACML2 access control
component

	yes

	saml.config

	Configure the use of Unity as an
attribute source (optional)

	no

Settings for the UNICORE/X process (e.g. memory)

The properties controlling the Java virtual machine running the
UNICORE/X process are configured in

	UNIX: the CONF/startup.properties configuration file

	Windows: the CONF\wrapper.conf configuration file

These properties include basic settings (like maximum memory),
see Administration for more on these.

Config file formats

UNICORE/X uses two different formats for configuration.

Java properties

	Each property can be assigned a value using the syntax name=value

	Please do not quote values, as the quotes will be interpreted as part of the value

	Comment lines are started by the “#”

	Multiline values are possible by ending lines with \, e.g.

name=value1 \
 value2

In this example the value of the name property will be value1 value2.

You can use system environment variables within property values, e.g.

name=${some_systemvariable}

Only use this syntax ${...} to reference UNICORE/X system variables!

To use UNIX system variables e.g. in storage path definitions use the
syntax $VARIABLE, i.e. WITHOUT curly braces.

XML

Various XML dialects are being used, so please refer to the example files distributed with
UNICORE for more information on the syntax. In general XML is a bit unfriendly to edit, and
it is rather easy to introduce typos.

Hint

It is advisable to run a tool such as xmllint after editing XML files to check for
typos.

UNICORE/X container configuration overview

The following table gives an overview of the basic settings for a
UNICORE/X server. These can be set in uas.config or container.properties.
Many of the settings (e.g. security) will be explained in more detail in
separate sections.

	Property name

	Type

	Default value / mandatory

	Description

	container.baseurl

	string

	
	(deprecated, use ‘container.externalurl’) Server URL as visible from the outside, usually the gateway’s address, including ‘<sitename>/services’

	container.client..*

	string can have subkeys

	
	Properties with this prefix are used to configure clients created by the container. See separate documentation for details.

	container.externalregistry.url*

	list of properties with a common prefix

	
	List of external registry URLs to register local services.(runtime updateable)

	container.externalregistry.use

	[true, false]

	false

	Whether the service should register itself in external registry(-ies), defined separately.(runtime updateable)

	container.externalurl

	string

	
	Server URL as visible from the outside, usually the gateway’s address, including ‘<sitename>’

	container.feature..*

	string can have subkeys

	
	Properties with this prefix are used to configure the deployed features. See separate documentation for details.

	container.host

	string

	localhost

	Server interface to listen on.

	container.httpServer..*

	string can have subkeys

	
	Properties with this prefix are used to configure container’s Jetty HTTP server. See separate documentation for details.

	container.messageLogging..*

	[true, false] can have subkeys

	false

	Append service name and set to ‘true’ to enable message logging for that service.

	container.onstartup

	string

	
	Space separated list of runnables to be executed on server startup. It is preferred to use onstartup.

	container.onstartup.<NUMBER>

	list of properties with a common prefix

	
	List of runnables to be executed on server startup.

	container.onstartupSelftest

	[true, false]

	true

	Controls whether to run tests of connections to external services on startup.

	container.persistence..*

	string can have subkeys

	
	Properties with this prefix are used to configure container’s persistence layer. See separate documentation for details.

	container.pools.executor.idletime

	integer number

	60000

	The timeout in millis for removing idle threads.

	container.pools.executor.maxsize

	integer number

	16

	The maximum thread pool size for the internal execution service

	container.pools.executor.minsize

	integer >= 1

	2

	The minimum thread pool size for the internal execution service

	container.pools.scheduled.idletime

	integer number

	60000

	Timeout in millis for removing idle threads.

	container.pools.scheduled.size

	integer >= 1

	3

	Defines the thread pool size for the execution of scheduled services.

	container.port

	integer [0 – 65535]

	7777

	Server listen port.

	container.runtimeConfigurationUpdate

	[true, false]

	true

	Whether the server refreshes its configuration at runtime whenever the main config file changes.

	container.security..*

	string can have subkeys

	
	Properties with this prefix are used to configure container’s security. See separate documentation for details.

	container.services.expirycheck.initial.*

	integer number can have subkeys

	120

	The initial delay for resource expiry checking (seconds). Additionally it can be used as a per-service setting, after appending a dot and service name to the property key.

	container.services.expirycheck.period.*

	integer number can have subkeys

	60

	The interval for resource expiry checking (seconds). Additionally it can be used as a per-service setting, after appending a dot and service name to the property key.

	container.services.instanceLockingTimeout.*

	integer number can have subkeys

	30

	The timeout when attempting to lock resources. Additionally it can be used as a per-service setting, after appending a dot and service name to the property key.

	container.services.lifetime.default.*

	integer >= 1 can have subkeys

	86400

	Default lifetime of resources (in seconds). Add dot and service name as a suffix of this property to set a default per particular service type.

	container.services.lifetime.maximum.*

	integer >= 1 can have subkeys

	
	Maximum lifetime of resources (in seconds). Add dot and service name as a suffix of this property to set a limit per particular service type.

	container.services.maxInstancesPerUser.*

	integer >= 1 can have subkeys

	2147483647

	Maximum number per user of WS-resource instances. Add dot and service name as a suffix of this property to set a limit per particular service type.

	container.services.persistence.persist

	string

	eu.unicore.services.persistence.Persistence

	Implementation used to maintain the persistence of resources state.

	container.services.registryEntryRefreshInterval

	integer >= 1

	1800

	The default termination time of service group entries in seconds.

	container.servletpath

	string

	/services

	Servlet context path. In most cases shouldn’t be changed.

	container.sitename

	string

	DEMO-SITE

	Short, human friendly, name of the target system, should be unique in the federation.

Integration of UNICORE/X with other parts of a UNICORE infrastructure

Since UNICORE/X is the central component, it is interfaced to other
parts of the UNICORE architecture, i.e. the Gateway and (optionally)
a Registry.

Gateway

The gateway address is hard-coded into CONF/container.properties, using
the container.baseurl property:

container.baseurl=https://Gateway_HOST:Gateway_PORT/SITENAME/services

where Gateway_HOST and Gateway_PORT are the host and port of the
gateway, and SITENAME is the UNICORE/X site name. The gateway address
MUST be accessible from the UNICORE/X node!

On the gateway side, the UNICORE/X address is hard-coded as well,
using an entry SITENAME=address in the connections.properties file
pointing to the network address of the UNICORE/X container.

Registry

It is possible to configure UNICORE/X to contact one or more external
or global UNICORE Registries in order to publish information on crucial
services there.

For example,

container.externalregistry.use=true
container.externalregistry.url=https://host1:8080/REGISTRY/services/Registry?res=default_registry
container.externalregistry.url2=https://host2:8080/BACKUP/services/Registry?res=default_registry

Unity

If you want to support user authentication via Unity [https://unity-idm.eu/],
and add an extra level of security by validating the replies from Unity,
you have to configure UNICORE/X to trust one or more Unity servers. This is done
using the container.security.trustedAssertionIssuers property. This
configures a truststore containing the certificates of all trusted
Unity servers (NOT the CA certificates).

[image: Unity Authentication]

For example, to configure a directory containing the trusted certificates
in PEM format:

configure trusted Unity certificates
container.security.trustedAssertionIssuers.type=directory
container.security.trustedAssertionIssuers.directoryLocations.1=conf/unity/unity.pem

All the usual options for configuring truststores are available here,
as well as described in Credential and truststore settings.

Note

To enable certificate-less end user access, you will also make sure that
the Gateway does not require SSL client-authentication. Please refer to the
 Gateway Manual.

Security

Overview

Security is a complex issue, and many options exist. On a high level, the following items
need to be configured:

	SSL setup (keystore and truststore settings for securing the
basic communication between components).

	Authentication options for selecting what kind of credentials users
can use to identify themselves to the UNICORE/X server.
A number of authentication options exist, from various forms of username/password
authentication to OIDC tokens. Even X.509 certificates and SSH keys are supported.
If multiple options are configured, the first successful authentication
will be used. The description of the configuration options can be found in Authentication

	Attribute sources configuration which assign an authorisation
role, UNIX login, group and other properties to UNICORE users. A
number of attribute sources exist, which can be combined using
various combining algorithms. These are configured in the
uas.config file. Due to the complexity, the description of the
configuration options can be found in Attribute sources.

In very rare cases, you might want to change the

	Access control setup (controlling in detail who can do what on
which services). Again, several options exist, which are described
in Authorization back-end (PDP) guide.

General security options

This table presents all security related options, except credential and truststore settings
which are described in the subsequent section.

	Property name

	Type

	Default value / mandatory

	Description

	container.security.accesscontrol.*

	[true, false] can have subkeys

	true

	Controls whether access checking (authorisation) is enabled. Can be used per service after adding dot and service name to the property key.(runtime updateable)

	container.security.accesscontrol.pdp

	Class extending eu.unicore.services.security.pdp.UnicoreXPDP

	
	Controls which Policy Decision Point (PDP, the authorisation engine) should be used. Default value is determined as follows: if eu.unicore.uas.pdp.local.LocalHerasafPDP is available then it is used. If not then this option becomes mandatory.

	container.security.accesscontrol.pdpConfig

	filesystem path

	
	Path of the PDP configuration file

	container.security.additionalServiceIdentifier*

	list of properties with a common prefix

	
	List of additional service identifiers (e.g. URLs where this service is accessible) accepted in SAML authentication.

	container.security.attributes.*

	string can have subkeys

	
	Prefix used for configurations of particular attribute sources.

	container.security.attributes.combiningPolicy

	string

	MERGE_LAST_OVERRIDES

	What algorithm should be used for combining the attributes from multiple attribute sources (if more then one is defined).

	container.security.attributes.disableRuntimeUpdates

	[true, false]

	false

	Whether to not allow runtime updates of the attribute sources.

	container.security.attributes.order

	string

	
	Attribute sources in invocation order.

	container.security.credential..*

	string can have subkeys

	
	Properties with this prefix are used to configure the credential used by the container. See separate documentation for details.

	container.security.defaultVOs.<NUMBER>

	list of properties with a common prefix

	empty string

	List of default VOs, which should be assigned for a request without a VO set. The first VO on the list where the user is member will be used.

	container.security.dynamicAttributes.*

	string can have subkeys

	
	Prefix used for configurations of particular dynamic attribute sources.

	container.security.dynamicAttributes.combiningPolicy

	string

	MERGE_LAST_OVERRIDES

	What algorithm should be used for combining the attributes from multiple dynamic attribute sources (if more then one is defined).

	container.security.dynamicAttributes.disableRuntimeUpdates

	[true, false]

	false

	Whether to not allow runtime updates of the dynamic attribute sources.

	container.security.dynamicAttributes.order

	string

	
	Dynamic attribute sources in invocation order.

	container.security.gateway.certificate

	filesystem path

	
	Path to gateway’s certificate file in PEM or DER format. Note that DER format is used only for files with ‘.der’ extension. It is used only for gateway’s authentication assertions verification (if enabled). Note that this is not needed to set it if waiting for gateway on startup is turned on.

	container.security.gateway.enable

	[true, false]

	true

	Whether to gateway-related features are enabled. Note that if it is enabled either the UNICORE/X server must be secured (usually via firewall) to disable non-gateway access.

	container.security.gateway.registration

	[true, false]

	false

	Whether the site should try to autoregister itself with the Gateway. This must be also configured on the Gateway side.

	container.security.gateway.registrationSecret

	string

	
	Required secret when autoregistering with the Gateway. This must match the secret configured on the Gateway side.

	container.security.gateway.registrationUpdateInterval

	integer >= 10

	30

	How often the automatic gateway registration should be refreshed.

	container.security.gateway.waitOnStartup

	[true, false]

	true

	Controls whether to wait for the gateway at startup.

	container.security.gateway.waitTime

	integer >= 1

	180

	Controls for how long to wait for the gateway on startup (in seconds).

	container.security.rest.*

	string can have subkeys

	
	Prefix used to configure REST subsystem security. See separate docs.

	container.security.sessionLifetime

	integer >= 1

	28800

	Controls the lifetime of security sessions (in seconds).

	container.security.sessionsEnabled

	[true, false]

	true

	Controls whether the server supports security sessions which reduce client/server traffic and load.

	container.security.sessionsPerUser

	integer >= 1

	5

	Controls the number of security sessions each user can have. If exceeded, some cleanup will be performed.

	container.security.sslEnabled

	[true, false]

	true

	Controls whether secure SSL mode is enabled.

	container.security.trustedAssertionIssuers..*

	string can have subkeys

	
	Allows for configuring a truststore (using normal truststore properties with this prefix) with certificates of trusted services (not CAs!) which are permitted to issue trust delegations and authenticate with SAML. Typically this truststore should contain certificates of all Unity instanes installed.

	container.security.truststore..*

	string can have subkeys

	
	Properties with this prefix are used to configure container’s trust settings and certificates validation. See separate documentation for details.

Credential and truststore settings

These properties are used to configure the server’s credential (used to
make outgoing SSL connections) and truststore. The truststore controls
which incoming SSL connections are accepted.

We recommend using a credential in PKCS12 or .pem format, and a
directory containing .pem files as truststore.

	Property name

	Type

	Default value / mandatory

	Description

	container.security.credential.path

	filesystem path

	
mandatory

	Credential location. In case of ‘jks’, ‘pkcs12’ and ‘pem’ store it is the only location required. In case when credential is provided in two files, it is the certificate file path.

	container.security.credential.format

	[jks, pkcs12, der, pem]

	
	Format of the credential. It is guessed when not given. Note that ‘pem’ might be either a PEM keystore with certificates and keys (in PEM format) or a pair of PEM files (one with certificate and second with private key).

	container.security.credential.password

	string

	
	Password required to load the credential.

	container.security.credential.keyPath

	string

	
	Location of the private key if stored separately from the main credential (applicable for ‘pem’ and ‘der’ types only),

	container.security.credential.keyPassword

	string

	
	Private key password, which might be needed only for ‘jks’ or ‘pkcs12’, if key is encrypted with different password then the main credential password.

	container.security.credential.keyAlias

	string

	
	Keystore alias of the key entry to be used. Can be ignored if the keystore contains only one key entry. Only applicable for ‘jks’ and ‘pkcs12’.

	container.security.credential.reloadOnChange

	[true, false]

	true

	Monitor credential location and trigger dynamical reload if file changes.

	Property name

	Type

	Default value / mandatory

	Description

	container.security.truststore.allowProxy

	[ALLOW, DENY]

	ALLOW

	Controls whether proxy certificates are supported.

	container.security.truststore.type

	[keystore, openssl, directory]

	
mandatory

	The truststore type.

	container.security.truststore.updateInterval

	integer number

	600

	How often the truststore should be reloaded, in seconds. Set to negative value to disable refreshing at runtime.(runtime updateable)

	container.security.truststore.directoryConnectionTimeout

	integer number

	15

	Connection timeout for fetching the remote CA certificates in seconds.

	container.security.truststore.directoryDiskCachePath

	filesystem path

	
	Directory where CA certificates should be cached, after downloading them from a remote source. Can be left undefined if no disk cache should be used. Note that directory should be secured, i.e. normal users should not be allowed to write to it.

	container.security.truststore.directoryEncoding

	[PEM, DER]

	PEM

	For directory truststore controls whether certificates are encoded in PEM or DER. Note that the PEM file can contain arbitrary number of concatenated, PEM-encoded certificates.

	container.security.truststore.directoryLocations.*

	list of properties with a common prefix

	
	List of CA certificates locations. Can contain URLs, local files and wildcard expressions.(runtime updateable)

	container.security.truststore.keystoreFormat

	string

	
	The keystore type (jks, pkcs12) in case of truststore of keystore type.

	container.security.truststore.keystorePassword

	string

	
	The password of the keystore type truststore.

	container.security.truststore.keystorePath

	string

	
	The keystore path in case of truststore of keystore type.

	container.security.truststore.opensslNewStoreFormat

	[true, false]

	false

	In case of openssl truststore, specifies whether the trust store is in openssl 1.0.0+ format (true) or older openssl 0.x format (false)

	container.security.truststore.opensslNsMode

	[GLOBUS_EUGRIDPMA, EUGRIDPMA_GLOBUS, GLOBUS, EUGRIDPMA, GLOBUS_EUGRIDPMA_REQUIRE, EUGRIDPMA_GLOBUS_REQUIRE, GLOBUS_REQUIRE, EUGRIDPMA_REQUIRE, EUGRIDPMA_AND_GLOBUS, EUGRIDPMA_AND_GLOBUS_REQUIRE, IGNORE]

	EUGRIDPMA_GLOBUS

	In case of openssl truststore, controls which (and in which order) namespace checking rules should be applied. The ‘REQUIRE’ settings will cause that all configured namespace definitions files must be present for each trusted CA certificate (otherwise checking will fail). The ‘AND’ settings will cause to check both existing namespace files. Otherwise the first found is checked (in the order defined by the property).

	container.security.truststore.opensslPath

	filesystem path

	/etc/grid-security/certificates

	Directory to be used for opeenssl truststore.

	container.security.truststore.crlConnectionTimeout

	integer number

	15

	Connection timeout for fetching the remote CRLs in seconds (not used for Openssl truststores).

	container.security.truststore.crlDiskCachePath

	filesystem path

	
	Directory where CRLs should be cached, after downloading them from remote source. Can be left undefined if no disk cache should be used. Note that directory should be secured, i.e. normal users should not be allowed to write to it. Not used for Openssl truststores.

	container.security.truststore.crlLocations.*

	list of properties with a common prefix

	
	List of CRLs locations. Can contain URLs, local files and wildcard expressions. Not used for Openssl truststores.(runtime updateable)

	container.security.truststore.crlMode

	[REQUIRE, IF_VALID, IGNORE]

	IF_VALID

	General CRL handling mode. The IF_VALID setting turns on CRL checking only in case the CRL is present.

	container.security.truststore.crlUpdateInterval

	integer number

	600

	How often CRLs should be updated, in seconds. Set to negative value to disable refreshing at runtime.(runtime updateable)

	container.security.truststore.ocspCacheTtl

	integer number

	3600

	For how long the OCSP responses should be locally cached in seconds (this is a maximum value, responses won’t be cached after expiration)

	container.security.truststore.ocspDiskCache

	filesystem path

	
	If this property is defined then OCSP responses will be cached on disk in the defined folder.

	container.security.truststore.ocspLocalResponders.<NUMBER>

	list of properties with a common prefix

	
	Optional list of local OCSP responders

	container.security.truststore.ocspMode

	[REQUIRE, IF_AVAILABLE, IGNORE]

	IF_AVAILABLE

	General OCSP ckecking mode. REQUIRE should not be used unless it is guaranteed that for all certificates an OCSP responder is defined.

	container.security.truststore.ocspTimeout

	integer number

	10000

	Timeout for OCSP connections in miliseconds.

	container.security.truststore.revocationOrder

	[CRL_OCSP, OCSP_CRL]

	OCSP_CRL

	Controls overal revocation sources order

	container.security.truststore.revocationUseAll

	[true, false]

	false

	Controls whether all defined revocation sources should be always checked, even if the first one already confirmed that a checked certificate is not revoked.

Configuring the execution backend (XNJS and TSI)

Information on the configuration of the XNJS and TSI backend can be found in Interfacing UNICORE/X to the TSI.

Configuring storage services

Information on the configuration of the storage factory service, shared storages and per-user
storages attached to target systems can be found in Configuration of storages.

HTTP proxy, timeout and web server settings

A number of settings exist that control the the web server and the
HTTPClient library used for outgoing HTTP(s) calls.

The HTTP server options are shown in the following table:

	Property name

	Type

	Default value / mandatory

	Description

	container.httpServer.CORS_allowedHeaders

	string

	*

	CORS: comma separated list of allowed HTTP headers (default: any)

	container.httpServer.CORS_allowedMethods

	string

	GET,PUT,POST,DELETE,HEAD

	CORS: comma separated list of allowed HTTP verbs.

	container.httpServer.CORS_allowedOrigins

	string

	*

	CORS: allowed script origins.

	container.httpServer.CORS_chainPreflight

	[true, false]

	false

	CORS: whether preflight OPTION requests are chained (passed on) to the resource or handled via the CORS filter.

	container.httpServer.CORS_exposedHeaders

	string

	Location,Content-Type

	CORS: comma separated list of HTTP headers that are allowed to be exposed to the client.

	container.httpServer.disabledCipherSuites

	string

	empty string

	Space separated list of SSL cipher suites to be disabled. Names of the ciphers must adhere to the standard Java cipher names, available here: http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SupportedCipherSuites

	container.httpServer.enableCORS

	[true, false]

	false

	Control whether Cross-Origin Resource Sharing is enabled. Enable to allow e.g. accesing REST services from client-side JavaScript.

	container.httpServer.enableHsts

	[true, false]

	false

	Control whether HTTP strict transport security is enabled. It is a good and strongly suggested security mechanism for all production sites. At the same time it can not be used with self-signed or not issued by a generally trusted CA server certificates, as with HSTS a user can’t opt in to enter such site.

	container.httpServer.enableSNI

	[true, false]

	false

	Enable Server Name Indication (SNI)

	container.httpServer.fastRandom

	[true, false]

	false

	Use insecure, but fast pseudo random generator to generate session ids instead of secure generator for SSL sockets.

	container.httpServer.gzip.enable

	[true, false]

	false

	Controls whether to enable compression of HTTP responses.

	container.httpServer.gzip.minGzipSize

	integer number

	100000

	Specifies the minimal size of message that should be compressed.

	container.httpServer.maxConnections

	integer >= 0

	0

	Maximum number of incoming connections to this server. If set to a value larger than 0, incoming connections will be limited to that number. Default is 0 = unlimited.

	container.httpServer.maxIdleTime

	integer >= 1

	200000

	Time (in ms.) before an idle connection will time out. It should be large enough not to expire connections with slow clients, values below 30s are getting quite risky.

	container.httpServer.maxThreads

	integer number

	255

	Maximum number of threads to have in the thread pool for processing HTTP connections. Note that this number will be increased with few additional threads to handle connectors.

	container.httpServer.minThreads

	integer >= 1

	1

	Minimum number of threads to have in the thread pool for processing HTTP connections. Note that this number will be increased with few additional threads to handle connectors.

	container.httpServer.requireClientAuthn

	[true, false]

	true

	Controls whether the SSL socket requires client-side authentication.

	container.httpServer.wantClientAuthn

	[true, false]

	true

	Controls whether the SSL socket accepts (but does not require) client-side authentication.

	container.httpServer.xFrameAllowed

	string

	http://localhost

	URI origin that is allowed to embed web interface inside a (i)frame. Meaningful only if the xFrameOptions is set to ‘allowFrom’. The value should be in the form: ‘http[s]://host[:port]’

	container.httpServer.xFrameOptions

	[deny, sameOrigin, allowFrom, allow]

	deny

	Defines whether a clickjacking prevention should be turned on, by insertionof the X-Frame-Options HTTP header. The ‘allow’ value disables the feature. See the RFC 7034 for details. Note that for the ‘allowFrom’ you should define also the xFrameAllowed option and it is not fully supported by all the browsers.

The HTTP client options are the following:

	Property name

	Type

	Default value / mandatory

	Description

	container.httpServer.digitalSigningEnabled

	[true, false]

	true

	Controls whether signing of key web service requests should be performed.

	container.httpServer.httpAuthnEnabled

	[true, false]

	false

	Whether HTTP basic authentication should be used.

	container.httpServer.httpPassword

	string

	empty string

	Password for use with HTTP basic authentication (if enabled).

	container.httpServer.httpUser

	string

	empty string

	Username for use with HTTP basic authentication (if enabled).

	container.httpServer.maxWsCallRetries

	integer number

	3

	Controls how many times the client should try to call a failing web service. Note that only the transient failure reasons cause the retry. Note that value of 0 enables unlimited number of retries, while value of 1 means that only one call is tried.

	container.httpServer.messageLogging

	[true, false]

	false

	Controls whether messages should be logged (at INFO level).

	container.httpServer.securitySessions

	[true, false]

	true

	Controls whether security sessions should be enabled.

	container.httpServer.serverHostnameChecking

	[NONE, WARN, FAIL]

	WARN

	Controls whether server’s hostname should be checked for matching its certificate subject. This verification prevents man-in-the-middle attacks. If enabled WARN will only print warning in log, FAIL will close the connection.

	container.httpServer.sslAuthnEnabled

	[true, false]

	true

	Controls whether SSL authentication of the client should be performed.

	container.httpServer.wsCallRetryDelay

	integer number

	10000

	Amount of milliseconds to wait before retry of a failed web service call.

	container.httpServer.http.allow-chunking

	[true, false]

	true

	If set to false, then the client will not use HTTP 1.1 data chunking.

	container.httpServer.http.connection-close

	[true, false]

	false

	If set to true then the client will send connection close header, so the server will close the socket.

	container.httpServer.http.connection.timeout

	integer number

	20000

	Timeout for the connection establishing (ms)

	container.httpServer.http.maxPerRoute

	integer number

	6

	How many connections per host can be made. Note: this is a limit for a single client object instance.

	container.httpServer.http.maxRedirects

	integer number

	3

	Maximum number of allowed HTTP redirects.

	container.httpServer.http.maxTotal

	integer number

	20

	How many connections in total can be made. Note: this is a limit for a single client object instance.

	container.httpServer.http.socket.timeout

	integer number

	0

	Socket timeout (ms)

	container.httpServer.http.nonProxyHosts

	string

	
	Space (single) separated list of hosts, for which the HTTP proxy should not be used.

	container.httpServer.http.proxy.password

	string

	
	Relevant only when using HTTP proxy: defines password for authentication to the proxy.

	container.httpServer.http.proxy.user

	string

	
	Relevant only when using HTTP proxy: defines username for authentication to the proxy.

	container.httpServer.http.proxyHost

	string

	
	If set then the HTTP proxy will be used, with this hostname.

	container.httpServer.http.proxyPort

	integer number

	
	HTTP proxy port. If not defined then system property is consulted, and as a final fallback 80 is used.

	container.httpServer.http.proxyType

	string

	HTTP

	HTTP proxy type: HTTP or SOCKS.

Features provided by UNICORE/X

The functionality of the UNICORE/X server is organised into features, where
each feature can combine services, startup code and the like.

Features are enabled by default.

Features can be disabled via configuration. It is also possible to
disable single services in a feature.

JobManagement

This feature deals with job submission and management, as well as
those storage services required for job processing.

To disable the whole feature

container.feature.JobManagement.enable=false

	Service name

	Usage

	TargetSystemFactoryService

	High level compute service

	TargetSystemService

	Per-user compute service instances

	JobManagement

	Per job service instance

	ReservationManagement

	Make and edit reservations

	StorageManagement

	Access to storages

	ServerServerFileTransfer

	Server-server file transfers

	ClientServerFileTransfer

	Data upload/download

StorageAccess

This feature provides storage access, storage factory service,
metadata management and file transfers.

	Service name

	Usage

	StorageManagement

	Access to storages

	StorageFactory

	Dynamically create new storage
endpoints

	MetadataManagement

	Metadata service

	ServerServerFileTransfer

	Server-server file transfers

	ClientServerFileTransfer

	Data upload/download

To disable the whole feature

container.feature.StorageAccess.enable=false

To disable only one service, e.g. the Storage Factory

container.feature.StorageAccess.StorageFactory.enable=false

Workflow

This feature provides workflow processing involving only this UNICORE/X server,
(i.e. NO cross-site workflows)

To disable the whole feature

container.feature.WorkflowEngine.enable=false

Base

This feature provides low-level services, but also contains the
RESTful APIs for jobs and data management.

	Service name

	Usage

	core

	RESTful APIs for jobs and data

	Task

	Service for async tasks (like metadata
extraction)

Admin

This feature provides the Admin service (see The Admin web service).

	Service name

	Usage

	admin

	RESTful API to the admin service

[image: registry-img] Registry

This feature provides the Registry service. This covers both the
internal version running in every UNICORE/X server, as well as the
shared Registry that is used to store information about multiple
UNICORE servers.

A setting

container.feature.Registry.mode=shared

will enable shared mode. Don’t do this on a normal UNICORE/X server.

	Service name

	Usage

	registries

	RESTful API to the Registry service

	Registry

	Registry service

	ServiceGroupEntry

	Registry entries service

[image: admin-img] Administration

Controlling UNICORE/X memory usage

You can set a limit on the number of service instances (e.g. jobs) per user.
This allows you to make sure your server stays nicely up and running even if
flooded by jobs. To enable, edit CONF/container.properties and
add properties, e.g.

container.wsrf.maxInstancesPerUser.JobManagement=200
container.wsrf.maxInstancesPerUser.FileTransfer=20

The last part of the property name is the service name, please see Features provided by UNICORE/X
for the services in UNICORE/X.

When the limits are reached, the server will report an error to the client (e.g. when
trying to submit a new job).

Logging

UNICORE uses the Log4j 2 [https://logging.apache.org/log4j/2.x/manual/configuration.html]
logging framework. The config file is specified with a Java property
log4j.configurationFile.

Hint

You can change the logging configuration at runtime by editing the logging.properties file.
The new configuration will take effect a few seconds after the file has been modified.

By default, log files are written to the the LOGS directory.

Within the logging pattern, you can use special variables to output information.
In addition to the variables defined by Log4j (such as %d), UNICORE defines several variables
related to the client and the current job:

	Variable

	Description

	%X{clientName}

	the distinguished name of the
current client

	%X{jobID}

	the unique ID of the currently
processed job

A sample logging pattern might be

%d [%X{clientName}] [%X{jobID}] [%t] %-5p %c{1} %x - %m%n

For more info on controlling the logging we refer to the Log4j 2 documentation [https://logging.apache.org/log4j/2.x/manual/configuration.html].

Logger categories, names and levels

Logger names are hierarchical. In UNICORE, prefixes are used (e.g. unicore.security)
to which the Java class name is appended. For example, the XUUDB connector in UNICORE/X logs to
the unicore.security.XUUDBAuthoriser logger.

Therefore the logging output produced can be controlled in a fine-grained manner.

Here is a table of the various logger categories:

	Log category

	Description

	unicore

	All of UNICORE

	unicore.security

	Security layer

	unicore.services

	Service operational information

	unicore.services.jobexecution

	Information related to job execution

	unicore.services.jobexecution.
USAGE

	Usage logging (see next section)

	unicore.xnjs

	XNJS subsystem (execution engine)

	unicore.xnjs.tsi

	TSI subsystem (batch system connector)

	unicore.client

	Client calls (to other servers)

	unicore.wsrflite

	Underlying services environment (WSRF framework)

	uftp

	UFTP client/server communication

	org.apache.cxf

	Web service toolkit (Apache CXF)

Caution

Please take care to not set the global level to TRACE or DEBUG for long times,
as this will produce a lot of output.

Usage logging

Often it is desirable to keep track of the usage of your UNICORE site. The UNICORE/X
server has a special logger category called unicore.services.jobexecution.USAGE which
logs information about finished jobs at INFO level.

Administration and monitoring

The health of a UNICORE/X container, and things like running services, lifetimes, etc. can be
monitored in several ways.

Commandline client (UCC)

It is possible to use the UNICORE commandline client (UCC) for administrative and
operations tasks.

To do this you need to configure UCC with administrative
privileges. One way is to add the admin role to your user account,
and select this role when running UCC commands

$ ucc -Z role:admin

or create a dedicated admin user.

Another way to do this is using the server certificate of
the UNICORE/X server, which will give UCC administrator rights provided UNICORE/X
is configured to accept X509 authentication.

use UNICORE/X keystore
authenticationMethod=X509
credential.path=/path/to/unicorex/keystore
credential.password=...

(optional) truststore config omitted

Also you should connect directly to UNICORE/X, not to the registry as
usual. Say your UNICORE/X server is running on myhost on port 7777,
your preferences file would look like this:

registry=https://myhost:7777/rest/registries/default_registry

Note that the registry URL points directly to the UNICORE/X server, not to a gateway.

Examples

Some UCC commands that are useful are the list-jobs, list-sites and rest commands.
Using list-jobs you can search for jobs with given properties, whereas the rest command
allows to look at any resource, or even destroy resources.

To list all jobs on the server belonging to a specific user, do

$ ucc list-jobs -f Log contains <username>

where username is some unique part of the user’s DN, or the xlogin. Similarly, you can
filter based on other properties of the job.

The rest command can be used to destroy resources, or look at their properties.
Please see ucc rest -h for details.

Try

$ ucc rest get https://myhost:7777/rest/core/factories/default_target_system_factory

The Admin web service

The Admin service is a powerful tool to get inside information about your server using the
UCC (or possibly another UNICORE client) and run one of the available admin actions,
which provide useful functions.

If you have enabled the admin service, you can do

$ ucc admin-info -l

to get information about available admin services. Note that you need to have role admin to invoke
the admin service. The output includes information about the available administrative commands.
To run one of these, you can use the admin-runcommand command. For example, to temporarily
disable job submission

$ ucc admin-runcommand ToggleJobSubmission

To have a look at the internal information about a user job, try

$ ucc admin-runcommand ShowJobDetails jobID=......

where jobID is the unique ID of the job.

Migration of a UNICORE/X server to another physical host

If you want to migrate a UNICORE/X server to another host, there are
several things to consider. The hostname and port are listed in
CONF/container.properties and usually in the Gateway’s
connection.properties file. These you will have to change. Otherwise,
you can copy the relevant files in CONF to the new machine. Also, the
persisted state data needs to be moved to the new machine, if it is
stored on the file system. If it is stored in a database, there is
nothing to be done. If you are using a TSI server, you might need to
edit the TSI’s properties file and update the tsi.njs_machine
property.

[image: security-img] Security concepts in UNICORE/X

This section describes the basic security concepts and architecture used in
UNICORE/X. The overall procedure performed by the security infrastructure
can be summarised as follows:

	the incoming message is authenticated first by the SSL layer. In
general, messages will be relegated through the Gateway, and will
not be directly from end user clients.

	extract authentication information from the HTTP headers, such as
username/password, OAuth token, a JWT delegation token or even
X509 certificate information.

	authenticate the message using the configured authentication
handlers. This procedure will assign a X500 distinguished name to
the current user, which in UNICORE terms is the user identity.

	a security session is established (if sessions are enabled), and
the client can simply send the security session ID on subsequent
requests to avoid having to go through the full authentication
process again.

	extract further information used for authorisation from the
message sent to the server. This information may include:
originator of the message(in case the message passed through a
UNICORE gateway), trust delegation tokens, incoming VO membership
assertions, etc.

	generate or lookup attributes to be used used for authorisation in
the configured attribute sources.

	perform policy check by executing a PDP request.

All these steps can be widely configured.

[image: UNICORE Authentication and Authorization]

Fig. 7 UNICORE Authentication and Authorization

Security concepts

Identity

A server has a certificate, which is used to identify the server when
it makes a web service request. This certificate resides in the server
keystore, (see Configuration of UNICORE/X).

A user request is assigned an identity during the authentication
process. Identities are X.500 distinguished names. Requests without
authentication are anonymous and are usually limited to
informational endpoints.

Security tokens

When a client makes a request to UNICORE/X, a number of tokens are
read from the message headers. These are placed in the security
context for the current request.

Resource ownership

Each service is owned by some entity identified by an X.500
distinguished name. By default, the server is the owner. When a
resource is created on user request (for example when submitting a
job), the user is the owner.

Trust delegation

Messages can be sent from other servers on behalf of an end user. The
server will prove this by using a JWT token for authentication,
which contains the target user’s identity (X500 name), and which is
signed by the sending server. The receiving server can check the
signature with the sender’s public key, which will generally be read
from the shared registry.

Attributes

UNICORE/X retrieves user attributes using either a local component or
a remote service. For example, an XUUDB attribute service can be
configured. See Attribute sources for more information.

Policy checks

Each request is checked based on the following information:

	available security tokens

	the resource owner

	the resource accessed (e.g. service name + instance id)

	the activity to be performed (the web method such as GET)

The validation is performed by the PDP (Policy Decision Point). The
default PDP uses a list of rules expressed in XACML 2.0 format that
are configured for the server. The Authorization back-end (PDP) guide describes how to
configure different engines for policy evaluation including a remote
one.

Authorisation

A request is allowed, if the PDP allows it, based on the user’s attributes.

Security sessions

If enabled (which is the default), the server generates a security
session after successful authentication. The session ID is sent back
to the client (via HTTP header X-UNICORE-SecuritySession in the
response), allowing the client to authenticate subsequent requests
using this session ID (using the same HTTP header). This will
speed-up the client-server communication, especially in cases where
external authentication (e.g. via Unity is used). These sessions have
a limited lifetime (8 hours by default).

Note

The security session only covers authentication attribute
assignment and authorization is always done for each request.

For details on how to configure this feature, see the general properties
overview in section Configuration of UNICORE/X.

[image: auth-img] Authentication

Introduction

UNICORE’s RESTful APIs require configuration of the mechanisms for end
user authentication, which will check the supplied credentials and map
the user to a distinguished name (DN).

This configuration is done in the container config file (typically
uas.config or container.properties).

The enabled authentication options and their order are configured
using a list of enabled mechanisms. For example,

container.security.rest.authentication.order=FILE UNITY-OAUTH X509

As you can see, you can use one or more authentication methods,
UNICORE will try all configured authentication options in order.

For each enabled option, a set of additional properties is used
to configure the details (for example the Unity address).

Username-password file

The FILE mechanism uses a local map file containing username, password
and the DN. Required configuration is the location of the file.

container.security.rest.authentication.FILE.class=eu.unicore.services.rest.security.FilebasedAuthenticator
container.security.rest.authentication.FILE.file=conf/rest-users.txt

The file format is:

#
on each line:
username:hash:salt:DN
#
demouser:<...>:<...>:CN=Demo User, O=UNICORE, C=EU

i.e. each line gives the username, the hashed password, the salt and
the user’s DN, separated by colons. To generate entries, i.e. to hash the
password correctly, the md5sum utility can be used. For example,
if your intended password is test123, you could do

$ SALT=$(tr -dc "A-Za-z0-9_$&!=+#" < /dev/urandom | head -c 16 | xargs)
$ echo "Salt is ${SALT}"
$ echo -n "${SALT}test123" | md5sum

which will output the salted and hashed password. Here we generate a
random string as the salt. Enter these together with the username, and
the DN of the user into the password file.

Unity authentication using OAuth Bearer token

This mechanism uses the OAuth token sent from the client (HTTP
Authorization: Bearer ... header) to authenticate to Unity.
In Unity terms, this uses the endpoint of type SAMLSoapIdP
(or SAMLUnicoreSoapIdP) with authenticator of
type oauth-rp with cxf-oauth-bearer.

container.security.rest.authentication.UNITY-OAUTH.class=eu.unicore.services.rest.security.UnityOAuthAuthenticator
container.security.rest.authentication.UNITY-OAUTH.address=https://localhost:2443/unicore-soapidp-oidc/saml2unicoreidp-soap/AuthenticationService

You can configure an additional validation of the Unity assertions
using the configured trusted assertion issuer certificate(s):

validate the received assertions?
container.security.rest.authentication.UNITY-OAUTH.validate=true

For this to work, UNICORE needs to public key of the Unity server as
one of the trusted assertion issuers, please refer to the relevant
section on trusted assertion issuers in the manual.

Unity authentication using username/password

This mechanism takes the username/password sent from the client (HTTP Basic auth)
and uses this to authenticate to Unity, retrieving an authentication assertion.

container.security.rest.authentication.UNITY.class=eu.unicore.services.rest.security.UnitySAMLAuthenticator
container.security.rest.authentication.UNITY.address=https://localhost:2443/unicore-soapidp/saml2unicoreidp-soap/AuthenticationService

You can configure an additional validation of the Unity assertions
using the configured trusted assertion issuer certificate(s):

validate the received assertions?
container.security.rest.authentication.UNITY.validate=true

For this to work, UNICORE needs to public key of the Unity server as
one of the trusted assertion issuers, please refer to the relevant
section on trusted assertion issuers in the manual.

OAuth token authentication with an OIDC server

This mechanism checks the OAuth token issued by an OIDC server such as Keycloak
directly with the issuing server.

container.security.rest.authentication.OAUTH.class=eu.unicore.services.rest.security.OAuthAuthenticator
container.security.rest.authentication.OAUTH.address=https://your.server/auth/realms/your_realm/protocol/openid-connect/userinfo

UNICORE will use the user’s OAuth token to make a call to the userinfo endpoint,
effectively checking if that token is (still) valid.

You can alternatively use the introspect endpoint, where UNICORE acts as an
OAuth client with client ID and secret to check the token’s validity and get user info.
In this case you need to set validate=true and provide client ID and secret

container.security.rest.authentication.OAUTH.address=https://your.server/auth/realms/your_realm/protocol/openid-connect/token/introspect
container.security.rest.authentication.OAUTH.validate=true
container.security.rest.authentication.OAUTH.clientID=your-client-id
container.security.rest.authentication.OAUTH.clientSecret=your-client-secret

The parameter dnTemplate is used to define the DN that will be assigned to authenticated users,
where the %param parameters will be replaced by the corresponding parameters from the (validated OIDC token)
The default template is UID=%email.

container.security.rest.authentication.OAUTH.dnTemplate=UID=%email

Successful OAuth authentication can assign the role and set the username based on the reply from the OIDC
server. To enable this, you need to define templates for setting the role and/or the user ID.
For example, to assign role “user” to each successfully authenticated request, and to
use the “login_name” attribute in the token as the UNIX uid,

container.security.rest.authentication.OAUTH.roleTemplate=user
container.security.rest.authentication.OAUTH.uidTemplate=%login_name

This can be overriden later by the configured attribute sources.

X.509 certificate

UNICORE supports X.509 client certificates for authentication.

container.security.rest.authentication.order= ... X509 ...

container.security.rest.authentication.X509.class=eu.unicore.services.rest.security.X509Authenticator

PAM

This authentication module allows to authenticate users with the
username and password that they have on the host running UNICORE/X.

container.security.rest.authentication.order= ... PAM ...

container.security.rest.authentication.PAM.class=eu.unicore.services.rest.security.PAMAuthenticator
container.security.rest.authentication.PAM.dnTemplate=CN=%s, OU=pam-local-users

The parameter dnTemplate is used to define which DN will be assigned to authenticated users,
where the %s will be replaced by the user name. In the example above, user test-user will
have the DN “CN=test-user, OU=pam-local-users”.

A successful PAM authentication will also assign a “user” role, and will set the username as the
UNIX login, which can be overriden later by the configured attribute sources.

Customizing JWT Delegation

UNICORE has a delegation mechanism for REST services.
The delegating server creates a JWT token containing user
authentication information and signs it with its private key. The
receiving server can check the signature using the sender’s public
key.

[image: UNICORE Delegation]

Fig. 8 UNICORE Delegation

The lifetime of the tokens issued by the server is 300 seconds by
default, which can be changed via

container.security.rest.jwt.lifetime=300

The public keys that servers use to verify the JWT signatures
are by default distributed via the shared service Registry.

This works out of the box, and does not require any configuration.

However, if required, you can load additional public keys for trusted
services from local PEM files using the following:

container.security.rest.jwt.trustedLocalIssuer.1=<path_to_local_PEM_file>
container.security.rest.jwt.trustedLocalIssuer.2=...

For very simple cases, e.g. when no shared registry is used, a shared
hmac secret can be configured as well. The length of the secret must be
at least 32 characters.

container.security.rest.jwt.hmacSecret=....

This secret must be the same on all the UNICORE servers that are
supposed to trust each other.

Note that a server with HMAC secret defined will still trust
certificate-based JWT tokens, but will always use HMAC to sign its own
delegation tokens.

[image: attr-services-img] Attribute sources

The authorization process in UNICORE/X requires that each UNICORE user
(identified by an X.500 DN) is assigned some attributes such as her
role. Attributes are also used to subsequently run tasks for the
authorized user and possibly can be used for other purposes as well
(for instance for accounting).

Therefore, the most important item for security configuration is
selecting and maintaining a so called attribute source (called sometimes
Attribute Information Point, AIP), which is
used by USE to assign attributes to UNICORE users.

Several attribute sources are available, that can even be combined
for maximum flexibility and administrative control.

There are two kinds of attribute sources:

	Classic or static attribute sources, which are used BEFORE authorization. Those attribute
sources maintain a simple mappings of user certificates (or DNs) to some attributes. The primary
role of those sources is to provide attributes used for authorization, but also incarnation
attributes may be assigned.

	Dynamic attribute sources, which are used AFTER authorization, only if it was successful.
Therefore, these attribute sources can assign only the incarnation attributes. The difference is
that attributes are collected for already authorized users, so the attributes can be assigned in
dynamic way not only using the user’s identity but also all the static attributes. This feature
can be used for assigning pool accounts for authorized users or adding additional supplementary
gids basing on user’s Virtual Organization.

UNICORE incarnation and authorization attributes

Note that actual names of the attributes presented here are not very important. Real attribute
names are defined by attribute source (advanced attribute sources, like Unity/SAML attribute
source, even provide a possibility to choose what attribute names are mapped to internal UNICORE
attributes). Therefore, it is only important to know the concepts represented by the
internal UNICORE attributes. On the other hand the values which are defined below are important.

The attributes in UNICORE can be multi-valued.

There are two special authorization attributes:

	role - represents an abstract user’s role. The role is used in a default (and rarely changed)
UNICORE authorization policy and in authorization process in general. There are several
possible values that are recognized by the default authorization policy:

	user - value specifies that the subject is allowed to use the site as a normal user
(submit jobs, get results, …).

	admin - value specifies that the subject is an administrator and may do everything.
For example, may submit jobs, get results of jobs of other users and even delete them.

	banned - user with this role is explicitly banned and all her request are denied.

	anything else - means that user is not allowed to do anything serious. Some very basic,
read-only operations are allowed, but this is a technical detail.
Also access to owned resources is granted, what can happen if the user had the user
role before. Typically, it is a good practice to use value banned in such case.

	virtualOrganisations - represents an abstract federated group of the user. By default it
is not used directly anywhere in the core stack, but several subsystems (as dynamic attribute
sources or jobs accounting) may be configured to use it.

There are several attributes used for incarnation:

	xlogin - specifies which local user id (in UNIX called uid) should be assigned to
the UNICORE user.

	group - specifies the primary group (primary gid) that the UNICORE user should get.

	supplementaryGroups - specifies all supplementary groups the UNICORE user should get.

	addDefaultGroups - boolean attribute saying whether groups assigned to the
Xlogin (i.e. the local uid of the UNICORE user) in the operating system should be additionally
added for the UNICORE user.

	queue - define which BSS queues are allowed for the particular user.

Finally, UNICORE can consume other attributes. All other attributes can be used only for
authorization or in more advanced setups (for instance, using the UNICORE/X incarnation tweaker).
Currently, all such additional attributes which are received from attribute source are treated
as XACML attributes and are put into XACML evaluation context. This feature is rather
rarely used, but it allows for creating a very fine grained authorization policies using
custom attributes.

Particular attribute source define how to assign these attribute to users. Not always
all types of attributes are supported by the attribute source,
e.g. XUUDB can not define (among others) per-user queues or VOs.

After introducing all the special UNICORE attributes, it must be noted that those attributes are
used in two ways. Their primary role is to strictly define what is allowed for the
user. For instance, the xlogin values specify the valid uids from which the user may
choose one. One exception here is Add operating system groups - user is always able to
set this according to his/her preference.

The second way of using those attributes is to specify the default behavior, when the user
is not expressing a preference. E.g. a default group (which must be single valued)
specify which group should be used, if user doesn’t provide any.

Attribute sources define the permitted values and default values for the attributes in
various ways. Some use conventions (e.g. that first permitted value is a default one), some
use a pair of real attributes to define the valid and default values of one UNICORE attribute.

Configuring Attribute Sources

Note

The following description is for configuring the classic, static attribute sources.
However, everything written here applies also to configuration of the dynamic sources:
the only difference is that instead of container.security.attributes. property prefix,
the container.security.dynamicAttributes. should be used.

The full list of options related to attribute sources is available here.

To configure the static attribute sources, the container.security.attributes.order
property in the configuration file is used. This is a space-separated
list with attribute sources names, where the named attribute sources will
be queried one after the other, allowing you to query multiple
attribute sources, override values, etc.

A second property, container.security.attributes.combiningPolicy, allows you
to control how attributes from different sources are combined.

For example, the following configuration snippet

#
Authorisation attribute source configuration
#
container.security.attributes.order=XUUDB FILE

#
Combining policy
#
MERGE_LAST_OVERRIDES (default), FIRST_APPLICABLE, FIRST_ACCESSIBLE or MERGE
container.security.attributes.combiningPolicy=MERGE_LAST_OVERRIDES

will declare two attribute sources, XUUDB and FILE, which should
be both queried and combined using the MERGE_LAST_OVERRIDES policy.

Since multiple attribute sources can be queried, it has to be defined how
attributes will be combined. For example, assume you have both XUUDB and FILE,
and both return a xlogin attribute for a certain user, say xlogin_1 and xlogin_2.

The different combining policies are:

	MERGE_LAST_OVERRIDES: new attributes override those from previous sources.
In our example, the result would be xlogin_2.

	FIRST_APPLICABLE: the attributes from the first source that returned a non
empty list of attributes are used. In our case this would be xlogin_1. If there
were no xlogin attribute for the user in XUUDB then xlogin_2 would be returned.

	FIRST_ACCESSIBLE: the attributes from the first source that is accessible are used.
In our case this would be xlogin_1. This policy is useful for redundant attribute sources.
E.g. you can configure two instances of XUUDB with the same users data; the 2nd one will
be tried only if the first one is down.

	MERGE: attributes are merged. In our example, the result would be xlogin_1, xlogin_2,
and the user would be able to choose between them.

Each of the sources needs a mandatory configuration option defining
the Java class, and several optional properties that configure the
attribute source. In our example, one would need to configure both
the XUUDB and the FILE source:

container.security.attributes.XUUDB.class=...
container.security.attributes.XUUDB.xuudbHost=...
...

container.security.attributes.FILE.class=...
container.security.attributes.FILE.file=...
...

Additionally, you can mix several combining policies together (see Chained attribute source
below for details).

Available attribute sources

XUUDB

The XUUDB is the standard option in UNICORE. It has the following features:

	Web service interface for querying and administration. It is suitable for serving data for
multiple clients. Usually, it is deployed to handle attributes for a whole UNICORE site running
multiple service containers.

	Access can be protected by a client-authenticated SSL.

	XUUDB can store static mappings of UNICORE users: the local xlogin, role and project
attributes (where project maps to Unix groups).

	XUUDB since version 2 can also assign attributes in a dynamic way, e.g. from pool accounts.

	Multiple xlogins per DN, where the user can select one.

	Entries are grouped using the so-called Grid Component ID (GCID). This makes it
easy to assign users different attributes when accessing different UNICORE/X servers.

Full XUUDB documentation is available from XUUDB Manual.

To enable and configure the XUUDB as a static attribute source,
set the following properties in the configuration file:

container.security.attributes.order=... XUUDB ...
container.security.attributes.XUUDB.class=eu.unicore.uas.security.XUUDBAuthoriser
container.security.attributes.XUUDB.xuudbHost=https://<xuudbhost>
container.security.attributes.XUUDB.xuudbPort=<xuudbport>
container.security.attributes.XUUDB.xuudbGCID=<your_gcid>

To enable and configure the XUUDB as a dynamic attribute source,
set the following properties in the configuration file:

container.security.dynamicAttributes.order=... XUUDB ...
container.security.dynamicAttributes.XUUDB.class=eu.unicore.uas.security.xuudb.XUUDBDynamicAttributeSource
container.security.dynamicAttributes.XUUDB.xuudbHost=https://<xuudbhost>
container.security.dynamicAttributes.XUUDB.xuudbPort=<xuudbport>

SAML Virtual Organizations aware attribute source (e.g. Unity)

UNICORE supports SAML attributes, which can be either fetched by the
server or pushed by the clients, using a Virtual Organisations aware
attribute source. In the most cases Unity is deployed as a server
providing attributes and handling VOs, as it supports all UNICORE
features and therefore offers a greatest flexibility, while being
simple to adopt. SAML attributes can be used only as a static
attribute source.

The SAML attribute source is described in a separate section Virtual Organisations (VO) Support.

File attribute source

This attribute source uses a single map file to map DNs to xlogin,
role and other attributes (only static mappings are possible). It is
useful when you don’t want to setup an additional service like the
XUUDB, or when you want to locally override attributes for
selected users (e.g. to ban somebody).

In contrast to the XUUDB, the File attribute source can store all
types of attributes, while the XUUDB only handles role, uid and group.

To use, set

container.security.attributes.order=... FILE ...
container.security.attributes.FILE.class=eu.unicore.uas.security.file.FileAttributeSource
container.security.attributes.FILE.file=<your map file>
container.security.attributes.FILE.matching=<strict|regexp>

The map file itself has the following format:

<?xml version="1.0" encoding="UTF-8"?>
<fileAttributeSource>
 <entry key="USER DN">
 <attribute name="role">
 <value>user</value>
 </attribute>
 <attribute name="xlogin">
 <value>unixuser</value>
 <value>nobody</value>
 ...
 </attribute>
 ...
 </entry>
 ...
</fileAttributeSource>

You can add an arbitrary number of attributes and attribute values.

The matching option controls how a client’s DN is mapped to a file entry.
In strict mode, the canonical representation of the key is compared with the
canonical representation of the argument. In regexp mode the key is considered
a Java regular expression and the argument is matched with it. When constructing
regular expressions a special care must be taken to construct the regular expression
from the canonical representation of the DN. The canonical representation is defined
here [http://download.oracle.com/javase/6/docs/api/javax/security/auth/x500/X500Principal.html#getName(java.lang.String)]
(but you don’t have to perform the two last upper/lower case operations).
In 90% of all cases (no multiple attributes in one RDN, no special characters, no
uncommon attributes) it just means that you should remove extra spaces between RDNs.

The evaluation is simplistic: the first entry matching the client is used (which is
important when you use regular expressions).

The attributes file is automatically refreshed after any change, before a subsequent read.
If the syntax is wrong then an error message is logged and the old version is used.

Recognized attribute names are:

	xlogin

	role

	group

	supplementaryGroups

	addOsGroups (with values true or false)

	queue

Attributes with those names (case insensitive) are handled as special UNICORE incarnation
attributes. The correspondence should be straightforward, e.g. the xlogin is
used to provide available local OS user names for the client.

For all attributes except of the supplementaryGroups the default value is the first one
provided. For supplementaryGroups the default value contains all defined values.

You can also define other attributes - those will be used as XACML authorization
attributes, with XACML string type.

PAM

This is a special attribute source which only works in conjunction
with the corresponding REST authentication module.

container.security.attributes.order=... PAM ...
container.security.attributes.PAM.class=eu.unicore.services.rest.security.PAMAttributeSource

Chained attribute source

Chained attribute source is a meta source which allows you to mix different combining
policies together. It is configured as other attribute sources with two parameters
(except of its class): order and combiningPolicy. The result of the chain attribute
source is the set of attributes returned by the configured chain.

Let’s consider the following example situation where we want to configure two
redundant Unity servers (both serving the same data) to achieve high availability.
Additionally we want to override settings for some
users using a local file attribute source (e.g. to ban selected users, by assigning them
the banned role).

The main chain configuration:
container.security.attributes.order=UNITY_CLUSTER FILE
container.security.attributes.combiningPolicy=MERGE_LAST_OVERRIDES

The FILE source cfg:
container.security.attributes.FILE.class=eu.unicore.uas.security.file.FileBasedAuthoriser
container.security.attributes.FILE.file=<your map file>

The UNITY_CLUSTER is a sub chain:
container.security.attributes.UNITY_CLUSTER.class=de.fzj.unicore.uas.security.util.AttributeSourcesChain
container.security.attributes.UNITY_CLUSTER.order=UNITY1 UNITY2
container.security.attributes.UNITY_CLUSTER.combiningPolicy=FIRST_ACCESSIBLE

And configuration of the two real sources used in the sub chain:
container.security.attributes.UNITY1.class=...
...
container.security.attributes.UNITY2.class=...
...

[image: VO-img] Virtual Organisations (VO) Support

VO (Virtual Organisation) is a quite broad concept. VO server software
(such as Unity) is used to store identities of federated entities
along with their attributes. Entities are managed with the usage of
groups to help administration. Those attributes can be used e.g. for
authorization purposes. It is described here how to take advantage of
this approach in any service based on the UNICORE Services Environment
such as UNICORE/X, Workflow Service, etc.

In the following we use Unity as our VO service, though in principle
other SAML servers can be used.

Overview

Features

All features below can be used in any combinations, independently:

	Unity can provide all user attributes to be used for authorization
and for accessing resources, also those which are unsupported by the
more simple attribute sources (including full support for default and
allowed attributes). Therefore, it can be used as a central attribute
source for multiple sites. Since attributes can be assigned in a group
scope, it is possible to use a central service with mappings, still
having some of the values (for instance Unix user IDs) which are different for
each site. It is simple to assign same attribute for groups of users.

	It is possible to assign non-standard attributes and use them for
authorization or for quality of service purposes.

	As it is possible (as always in UNICORE) to mix attributes from
multiple attribute sources. Unity can provide federation-wide
settings (for example, the UNICORE role), while local settings (like
Unix gids or uids) are assigned locally by particular sites. This is
especially useful when using a dynamic attribute source as a
complementary one to the static attribute source: Unity
provides federation-wide authorization attributes (such as role) and
dynamic source assigns local uids/gids.

The system works in as an attribute source, attributes are pulled (fetched)
by the module from a VO service specified in a configuration file when
a new request arrives. This mode is transparent for clients.

VO selection

Some of the VO features (such as authorization), require only
information about all VOs the user is a member of and associated
attributes. However, in many cases it is required to assign user’s
request to a particular VO and to execute it in the VO scope. This is,
for instance, needed when a special gid is assigned basing on the
user’s VO or when VOs should be charged for their jobs.

To associate a request with a VO the user has to select one or
administrator can define a default which is used when user didn’t
select a VO. The user can select an effective VO using request preference
selectedVirtualOrganisation. Of course it must be one of the VOs the
user is member of.

Administrator can configure a list of preferred VOs. If such a list is
provided, then the first VO from the list, where the user is a member
is used when user don’t provide her own selection. See the
General security options for the syntax.

If it is required that all requests should have the effective VO set,
then it is possible to deny other requests using an additional rule in
the authorization policy. The rule should deny all requests that
doesn’t have the selectedVO authorization attribute. See
 Guide to XACML security policies for details.

Supported VO (SAML) servers

This module was tested and works well with the Unity system.

There are other possibilities and you can try to use any SAML (2.0)
Attribute service. We are interested in all success/failure stories!

VO deployment planning

First of all it must be decided which VO/group (in UNICORE case it
doesn’t matter whether a VO or VO subgroup is used, all subgroups can
be treated as a full-fledged VOs, and VOs are just a nick-name of
top-level groups) is used by a site.

In case when a site needs only generic, federation-wide attributes
from a VO, a group which is common for all sites should be used. Such
a group can provide, for instance, the role attribute for the
members. Of course, if uids are the same across all sites, then uids
can be also assigned in such VO.

In the case when a site needs also some site-specific attributes, a
dedicated group should be created for the site, as a subgroup of a VO
(e.g. /VO1/sites/SiteA). VO administrators should assign VO-scoped
attributes in this group and make sure that all universal VO
attributes are also replicated there. Please note that Unity allows
for outsourcing VO management on a per-group basis, so it is possible
to assign administrative permissions to such group for a site
representative.

The next issue is how to handle a situation when there are multiple
Unix user IDs or roles available for the user, and how to mark the
default one? To overcome this, for every incarnation attribute it is
possible to define two VO attributes. The base one can possess many
values (e.g. in case of UIDs every value is a different UID)
while the additional attribute holds a single default value. When
there is no need for multiple values then the base attribute can be
used alone. When default attribute is defined then its value is used
unless a user provided some preferences. Of course, such preferences
must be valid, i.e. be included in the allowed values of the base
attribute.

Details on what attributes are used for those purposes are presented
in the following section.

Configuration

This sections describes the default configuration file format which is
used to configure the SAML attribute source and provides detailed and
comprehensive information on all configuration options. In most cases,
the defaults are fine - you can refer to the HOWTO
for a short quick start information.

Some of the configuration options require a value of a VO/GROUP type.
Whenever it is needed it should be written in the following way:

/VO[/group1[/subgroup2[...]]]

where elements in square brackets are optional. E.g. /Math/users
denotes a group users of a VO called Math.

In case of UNICORE/X and other USE servers the configuration is
provided in a separate file, by default the saml.config from the
configuration directory of the server (you can change location and
name of this file, see below). It holds generic VO configuration which
is not dependent to the actual server used - the most of settings is
configured there. This file options are described
below.

To enable the VO subsystem certain settings are also required in the
main server’s configuration file. You have to enable the SAML Attribute Source.
You can use only one or even use multiple instances. The latter situation occurs
when you want to support multiple VOs (from one or multiple VO servers) - then
you have to define one attribute source per VO (or VO group).

Example with a VO attribute sources and also with local XUUDB. Local
data from XUUDB (if it exists) will override attributes received from
VOs:

container.security.attributes.order=SAML XUUDB

container.security.attributes.SAML.class=eu.unicore.uas.security.saml.SAMLAttributeSource
container.security.attributes.SAML.configurationFile=conf/saml.config

... xuudb configuration omitted ...

Before proceeding to fill the SAML/VO configuration it is suggested to prepare a truststore,
which should contain ONLY the certificates of the trusted SAML servers. Note that
this file must not contain any CA certificates, only the trusted VO servers’ certificates!
This file is optional, but will increase security.

Logging configuration is done by means of the standard UNICORE logging configuration file.
See Logging configuration section for possible settings related to the SAML subsystem.

Main SAML (VO) configuration file

The following sections provide complete reference of available options
for the main configuration file (usually saml.config).

	Property name

	Type

	Default value / mandatory

	Description

	saml.attributeQuery.password

	string

	
	If certificate-based authentication to the SAML server is disabled, you might be able to use username/password. This sets the password.

	saml.attributeQuery.username

	string

	
	If certificate-based authentication to the SAML server is disabled, you might be able to use username/password. This sets the username.

	saml.attributeQueryURL

	string

	localhost

	Full address (URL) of SAML Attribute Query service.

	saml.cacheTtl

	integer number

	600

	Controls pulled attributes cache. Set to negative integer to disable the caching or to positive number - lifetime in seconds of cached entries.

	saml.enableGenericAttributes

	[true, false]

	true

	If turned on, then not only the recognized UNICORE attributes are processed, but also all others, which can be used for authorization.

	saml.group

	string

	
	Group which is accepted by this attribute source. UNICORE/X will honor only attributes with exactly this scope or global (i.e. without scope set)

	saml.localServerURI

	string

	
	Can contain a local server SAML identifier to be used in SAML requests. If unset, then the server’s X.500 DN is used.

	saml.truststore..*

	string can have subkeys

	
	Properties starting with this prefix are used to configure validation of SAML assertion issuers certificates. Trust anchors should contain only the trusted SAML servers certificates. All options are the same as those for other UNICORE truststores.

	saml.unicoreAttribute..*

	string can have subkeys

	
	Properties starting with this prefix are used to configure mappings of SAML attributes to UNICORE internal ones.

	saml.verifySignatures

	[true, false]

	true

	Additional security for the pulled assertions (except transport level which is always on) can be achieved by verification of signatures of the received assertions. The key which is used for verification must be present in the SAML truststore.

The following table shows options, which are used to define mappings of SAML attributes to
UNICORE incarnation attributes (the available names of UNICORE incarnation attributes are
provided in UNICORE incarnation and authorization attributes).

	Property name

	Range of values

	Description

	saml.unicoreAttribute.NAME

	URI

	Value must be a SAML attribute name which will be used
as a UNICORE internal incarnation attribute NAME.

	saml.unicoreAttribute.NAME.default

	URI

	Value must be a SAML attribute name which will be used as
a default for UNICORE internal incarnation attribute NAME.

	saml.unicoreAttribute.NAME.disabled

	ANY, IGNORED

	When this attribute is present regardless of its value the
NAME attribute won’t be mapped.

Example mapping for Unity attributes

Note that your distribution should contain sensible defaults for
Unity attribute mappings, which does not need to be modified.

standard settings for the xlogin mapping, however let's ignore pushed xlogins
saml.unicoreAttribute.xlogin=urn:unicore:attrType:xlogin
saml.unicoreAttribute.xlogin.default=urn:unicore:attrType:defaultXlogin
saml.unicoreAttribute.xlogin.pushDisabled=

#standard role mapping
saml.unicoreAttribute.role=urn:unicore:attrType:role
saml.unicoreAttribute.role.default=urn:unicore:attrType:defaultRole

#supplementary groups are stored in a non standard attribute
saml.unicoreAttribute.supplementaryGroups=urn:ourCompany:secondaryGids

#and group - without default
saml.unicoreAttribute.group=urn:unicore:attrType:primaryGid

#queue mapping is defined, but will be ignored (disabled)
saml.unicoreAttribute.queue=urn:unicore:attrType:queue
saml.unicoreAttribute.queue.default=urn:unicore:attrType:defaultQueue
saml.unicoreAttribute.queue.disable=

addDefaultGroups - is not defined, so won't be mapped

#getting the user's groups is always a good idea
saml.unicoreAttribute.virtualOrganisations=urn:SAML:voprofile:group

Logging configuration

All components use the usual log4j/2 logging mechanism. All events are
logged with unicore.security.saml prefix. The reporting class name is
appended.

As an example, a configuration for logging all events for the SAML / VO
subsystem can be specified as follows:

logger.saml.name=unicore.security.saml
logger.saml.level=debug

VO (SAML) configuration HOWTOs

SAML and UNICORE - basic case

This section shows all the steps which are required to setup a
UNICORE/X server and Unity to work as SAML attribute source. In this
scenario we will use Unity to centrally store mappings of user DNs
to UNIX logins (Xlogins) and roles of of those users. The UNICORE/X
server will then query (pull) attributes from Unity, similar to using
an XUUDB.

Note

We write UNICORE/X in the following, but any server based on the UNICORE
Services Environment (Registry, Workflow, etc) works the same way.

The required steps are:

	Add Unity’s CA certificate to the UNICORE/X truststore (so SSL connections can be established).

	Add UNICORE/X’s CA certificate to the Unity server’s truststore (so SSL connections can be
established).

	Add the UNICORE/X server’s DN (from its certificate) as a member to the Unity service.
You don’t have to make it a member of any particular VO (or group). However it must have the
read permission to all groups where its users will be placed. In Unity, this corresponds
to the Priviledged Inspector role (check Unity documentation [https://unity-idm.eu/] for details).

	Check that UNICORE/X can properly authenticate to Unity on the SAML endpoint that is used to
query attributes. Generally this will be via the UNICORE/X certificate, if that is not
possible, you’ll need to setup an additional username identity for the entity created in Step
3, and setup password authentication.

	Create a VO (possibly with subgroups). Add users to the group.
Here we will assume this group is /Math-VO/UUDB/SiteA.
Next assign them in the scope of the group attribute
urn:unicore:attrType:xlogin with the value of Unix UID for the user, and attribute
urn:unicore:attrType:role with the value of the user’s role (usually its just user).
Note that if you want to assign the same Xlogin/role to multiple users then you can
define Unity group attributes and set them for the whole /Math-VO/UUDB/SiteA group.

	Enable the SAML attribute source in the UNICORE server. Here we will configure it as
the primary source and leave XUUDB to provide local mappings (which can override data fetched
from Unity). You should have the following entries:

container.security.attributes.order=SAML XUUDB
container.security.attributes.combiningPolicy=MERGE_LAST_OVERRIDES
... xuudb configuration omitted

container.security.attributes.SAML.class=eu.unicore.uas.security.saml.SAMLAttributeSource

	Configure the SAML attribute source (typically in the saml.config) file as follows:

saml.group=/Math-VO/UUDB/SiteA

saml.verifySignatures=true
saml.truststore.type=directory
saml.truststore.directoryLocations.1=/opt/unicore/certs/unity/*.pem

saml.localServerURI=https://example.org:7777

saml.cacheTtl=20

saml.attributeQueryURL=https://unity.example.org/unicore-soapidp/saml2unicoreidp-soap/AssertionQueryService
#saml.attributeQuery.username=UX-VENUS
#saml.attributeQuery.password=the!njs!!

Mapping of Unity attributes (right side) to the special, recognized by UNICORE
incarnation attributes (left)
saml.unicoreAttribute.xlogin=urn:unicore:attrType:xlogin
saml.unicoreAttribute.xlogin.default=urn:unicore:attrType:defaultXlogin
saml.unicoreAttribute.role=urn:unicore:attrType:role
saml.unicoreAttribute.role.default=urn:unicore:attrType:defaultRole
saml.unicoreAttribute.group=urn:unicore:attrType:primaryGid
saml.unicoreAttribute.group.default=urn:unicore:attrType:defaultPrimaryGid
saml.unicoreAttribute.supplementaryGroups=urn:unicore:attrType:supplementaryGids
saml.unicoreAttribute.supplementaryGroups.default=urn:unicore:attrType:defaultSupplementaryGids
saml.unicoreAttribute.addDefaultGroups=urn:unicore:attrType:addDefaultGroups
saml.unicoreAttribute.queue=urn:unicore:attrType:queue
saml.unicoreAttribute.queue.default=urn:unicore:attrType:defaultQueue
saml.unicoreAttribute.virtualOrganisations=urn:SAML:voprofile:group

	In the SAML truststore directory (/opt/unicore/certs/unity/ in this case) put
the Unity certificate (NOT the CA certificate) as a PEM file, with pem extension.

(Very) advanced example: Unity and UNICORE - using fine grained authorization

In this scenario we will enhance the first one to use custom authorization attributes in UNICORE
policy. To do so ensure that you have this setting in the saml.config file:

saml.enableGenericAttributes=true

Then you can modify the XACML policy to require certain VO attributes.

Important fact to note here is how the
user’s group membership is encoded as an XACML attribute. By default
it is an attribute of string type (so XACML
DataType=”http://www.w3.org/2001/XMLSchema#string”) with its name
(AttributeId) equal to urn:SAML:voprofile:group. The example
policy below uses this attribute.

The following XACML fragment allows for reaching TargetSystemFactory service only for the users
which are both members of VO Example-VO and a VO group /Math-VO/UUDB/SiteA. Moreover, those
users also must have a standard UNICORE/X attribute role with a value user. It means that in
Unity, UNICORE users must have urn:unicore:attrType:role attribute defined (it is the
standard setting) with a value user.

<Rule RuleId="AcceptTSF" Effect="Permit">
 <Description>
 Accept selected users to reach TSF
 </Description>
 <Target>
 <Resources>
 <Resource>
 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#anyURI">TargetSystemFactoryService</AttributeValue>
 <ResourceAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#anyURI" AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/>
 </ResourceMatch>
 </Resource>
 </Resources>
 </Target>
 <Condition>
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
 <SubjectAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string" AttributeId="role"/>
 </Apply>
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">user</AttributeValue>
 </Apply>
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:any-of-all">
 <Function FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal"/>
 <SubjectAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string" AttributeId="urn:SAML:voprofile:group"/>
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-bag">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">/Example-VO</AttributeValue>
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">/Math-VO/UUDB/SiteA</AttributeValue>
 </Apply>
 </Apply>
 </Apply>
 </Condition>
</Rule>

[image: data-persistence-img] The UNICORE persistence layer

UNICORE stores its state in data bases. The information that is stored
depends on the services that are running in the container, and can
include:

	user’s resources (instances of storage, job and other services)

	jobs

	workflows

	etc.

The job directories themselves reside on the target system, but UNICORE keeps
additional information (like, which UNICORE user owns a particular job).

The data on user resources is organised by service name, i.e. each service
(for example, JobManagement) stores its information
in a separate database table (having the same name as the service, e.g. JobManagement).

The UNICORE persistence layer offers three kinds of storage:

	on the filesystem of the UNICORE/X server (using the H2 database engine), which is generally
the default;

	on a database server (MySQL, PostgreSQL, or the server mode of H2);

	in-memory, i.e. all info is lost on server restart.

While the first one is very easy to setup, and easy to manage, the second option
allows advanced setups like clustering/load balancing configurations involving multiple
UNICORE/X servers sharing the same persistent data. Using MySQL or PostgreSQL
has the additional benefit that the server starts up faster.

Data migration from one database system to another is in principle possible, but you
should select the storage carefully before going into production. In general, if you
do not require clustering/load balancing, you should choose the default filesystem option,
since it is less administrative effort.

Configuring the persistence layer

Peristence properties are configured in two files:

	container.properties for all service data

	xnjs.properties for job data

It is recommended to specify a configuration file using the persistence.config property. Thus,
persistence configuration can be easily shared between the job (XNJS) data and other service data.
If the persistence.config property is set, the given file will be read as a Java properties
file, and the properties will be used.

Note

All properties can be specified on a per table basis, by appending .<TABLENAME>
to the property name. This means you can even select different storage systems for
different data, e.g. store service data on the filesystem and jobs in MySQL.
The table name is case-sensitive.

	Property name

	Type

	Default value / mandatory

	Description

	persistence.cache.enable.*

	[true, false] can have subkeys

	true

	Enable caching.

	persistence.cache.maxSize.*

	integer number can have subkeys

	10

	Maximum number of elements in the cache (default: 10).

	persistence.class.*

	string can have subkeys

	eu.unicore.persist.impl.H2Persist

	The persistence implementation class, which controls with DB backend is used.

	persistence.cluster.config.*

	string can have subkeys

	
	Clustering configuration file.

	persistence.config

	filesystem path

	
	Allows to specify a separate properties file containing the persistence configuration.

	persistence.database.*

	string can have subkeys

	
	The name of the database to connect to (e.g. when using MySQL).

	persistence.directory.*

	string can have subkeys

	
	The directory for storing data (embedded DBs).

	persistence.driver.*

	string can have subkeys

	
	The database driver. If not set, the default one for the chosen DB backend is used.

	persistence.h2.cache_size.*

	integer number can have subkeys

	1024

	(H2) Cache size.

	persistence.h2.options.*

	string can have subkeys

	
	(H2) Further options separated by ‘;’.

	persistence.h2.server_mode.*

	[true, false] can have subkeys

	false

	(H2) Connect to a H2 server.

	persistence.host.*

	string can have subkeys

	localhost

	The database host.

	persistence.max_connections.*

	integer number can have subkeys

	1

	Connection pool maximum size.

	persistence.mysql.tabletype.*

	string can have subkeys

	MyISAM

	(MySQL) Table type (engine) to use.

	persistence.mysql.timezone.*

	string can have subkeys

	UTC

	(MySQL) Server timezone.

	persistence.mysql.useSSL.*

	[true, false] can have subkeys

	false

	(MySQL) Connect using SSL.

	persistence.password.*

	string can have subkeys

	empty string

	The database password.

	persistence.pgsql.useSSL.*

	[true, false] can have subkeys

	true

	(PostgreSQL) Connect using SSL.

	persistence.pool_timeout.*

	integer number can have subkeys

	3600

	Connection pool timeout when trying to get a connection.

	persistence.port.*

	integer number can have subkeys

	
	The database port. If not set, the default port for the chosen DB backend is used.

	persistence.user.*

	string can have subkeys

	sa

	The database username.

Caching

By default, caching of data in memory is enabled. It can be switched off and configured on a
per-table (i.e. per entity class) basis. If you have a lot of memory for your server, you might
consider increasing the cache size for certain components.

For example, to set the maximum size of the JOBS cache to 1000, you’d configure

persistence.cache.maxSize.JOBS=1000

The H2 engine

H2 is a pure Java database engine. It can be used in embedded mode (i.e. the engine runs in-process), or
in server mode, if multiple UNICORE servers should use the same database server. For more information, visit
http://www.h2database.com.

Connection URL

In H2 server mode, the connection URL is constructed as follows:

jdbc:h2:tcp://<persistence.host>:<persistence.port>/<persistence.directory>/<table_name>

The MySQL Engine

The MySQL database engine does not need an introduction. To configure its use for UNICORE persistence
data, you need to set

persistence.class=de.fzj.unicore.persist.impl.MySQLPersist

To use MySQL, you need access to an installed MySQL server. It is beyond the scope
of this guide to describe in detail how to setup and operate MySQL.
The following is a simple sequence of steps to be performed for setting up the required
database structures:

	open the mysql console

	create a dedicated user, say unicore who will connect from some server in the domain yourdomain.com or
from the local host:

CREATE USER 'unicore'@'%.yourdomain.com' identified by 'some_password' ;
CREATE USER 'unicore'@'localhost' identified by 'some_password' ;

	create a dedicated database for use by the UNICORE/X server:

CREATE DATABASE 'unicore_data_demo_site';
USE 'unicore_data_demo_site';

	allow the unicore user access to that database:

GRANT ALL PRIVILEGES ON 'unicore_data_demo_site.*' to 'unicore'@'localhost';
GRANT ALL PRIVILEGES ON 'unicore_data_demo_site.*' to 'unicore'@'%.yourdomain.com';

The UNICORE persistence properties would in this case look like this:

persistence.class=de.fzj.unicore.persist.impl.MySQLPersist
persistence.database=unicore_data_demo_site
persistence.user=unicore
persistence.password=some_password
persistence.host=<your_mysql_host>
persistence.port=3306
persistence.mysql.tabletype=MyISAM

If you want to store data from multiple UNICORE servers, make sure to
use a different database for each of them.

The PostgreSQL engine

To configure PostgreSQL for UNICORE persistence data, you need to set

persistence.class=de.fzj.unicore.persist.impl.PGSQLPersist

You will need access to a PostgreSQL server, and configure access to
a database. We recommend a dedicated PostgreSQL user. Here is an example
for how to setup access.

	create a dedicated PostgreSQL user unicore (and set a password)

$ sudo -u postgres createuser -P unicore

	create a database for holding UNICORE data

$ sudo -u postgres createdb -O unicore unicore_data

	Check that the PostgreSQL server allows for password authentication for the UNICORE user.
Ensure that in pg_hba.conf you have lines similar to these:

host all all 127.0.0.1/32 md5
host all all ::1/128 md5

	If UNICORE server(s) and PostgreSQL servers are on different hosts, adapt hostnames accordingly.

	You can check that the connection works by invoking the following on the UNICORE/X server:

$ psql -h localhost unicore_data unicore

The UNICORE persistence properties would in this case look like this:

persistence.class=de.fzj.unicore.persist.impl.PGSQLPersist
persistence.database=unicore_data
persistence.user=unicore
persistence.password=some_password
persistence.host=<your_postgresql_host>
persistence.port=5432

[image: unicorex-tsi-img] Interfacing UNICORE/X to the TSI

The link from UNICORE/X to the UNICORE TSI, the component that deals with the actual
job execution and file system access is configured using a properties
file named tsi.config. It is included from the main config file.

Here’s an overview of the most important properties that can be set in this file:

	Property name

	Type

	Default value / mandatory

	Description

	XNJS.allowUserExecutable

	[true, false]

	true

	Whether to allow user-defined executables. If set to false, only applications defined in the IDB may be run.

	XNJS.autosubmit

	[true, false]

	false

	Automatically submit a job to the BSS without waiting for an explicit client start.

	XNJS.bssResubmitCount

	integer >= 1

	3

	How often should UNICORE/X try to submit a job to the BSS.

	XNJS.bssResubmitDelay

	integer >= 1

	10

	Minimum delay (in seconds) between attempts to submit a job to the BSS.

	XNJS.defaultUmask

	integer number

	0027

	Default umask to be used for jobs.

	XNJS.filespace

	string

	
	Directory on the TSI for the job directories. Must be world read/write/executable.

	XNJS.filespaceUmask

	integer number

	0002

	Umask to be used for creating the base directory for job directories.

	XNJS.idbfile.*

	string can have subkeys

	
	IDB configuration.

	XNJS.localtsi.*

	string can have subkeys

	
	Properties for configuring the embedded Java TSI (if used). See separate docs.

	XNJS.numberofworkers

	integer >= 0

	4

	Number of XNJS worker threads.

	XNJS.parameterSweepLimit

	integer >= 0

	200

	Upper limit for number of jobs generated in a single parameter sweep.

	XNJS.staging.*

	string can have subkeys

	
	Properties for configuring the data staging and I/O components. See separate docs.

	XNJS.strictUserInputChecking

	[true, false]

	false

	Whether to be restrictive in checking user-supplied arguments and environment variables. Set to true if you do not want ANY user code to run on your TSI node.

Most of the other settings in this file are used to configure the
internals and should usually be left at their default
values.

The UNICORE TSI

This section describes installation and usage of the UNICORE TSI.
This is a mandatory step if you want to interface to batch systems
such as Slurm to efficiently use a compute cluster.

Note

Without this component, all jobs will run on the UNICORE/X server, under the
user id that started UNICORE/X.

In a nutshell, you have to perform the following steps:

	Install the UNICORE TSI on your cluster front end node(s)

	In the UNICORE TSI configuration, edit the tsi.properties file

	On the UNICORE/X server, edit tsi.config and simpleidb files

	Start the newly installed TSI (as root in a multiuser setting)

	Restart UNICORE/X

Installation of the correct TSI

The TSI is a service that is running on the target system.
In case of a cluster system, you’ll need to install it on the frontend
machine(s), i.e. the machine from where your jobs are submitted to the
batch system. There are different variants available for the
different batch systems such as SLURM or Torque.

Usually, installation and start of the TSI will be performed as the
root user. The TSI will then be able to change to the current UNICORE
user’s id for performing work (Note: nothing will ever be executed as
root). You can also use a normal user, but then all commands will
be executed under that user’s id.

As the TSI is a crucial and sensitive service, make sure to read
its documentation. This guide serves just as a quick overview of
the necessary steps.

	First, download and install the UNICORE TSI package. The UNICORE
core server bundle [https://sourceforge.net/projects/unicore/files/Servers/Core/]
(quickstart package) includes the TSI in the tsi subdirectory. You should copy
this folder to the correct machine first. In the following this will be denoted by
<tsidir>.

	Install the correct TSI variant by

$ cd <tsidir>
$./Install.sh

When prompted for the path, choose an appropriate one, denoted <your_tsi> in the following.

	Check the TSI configuration, especially command locations, path settings, etc.

Required TSI Configuration

Configuration is done by editing <tsi_conf_dir>/tsi.properties.
At least check the following settings:

UNICORE/X machine
tsi.unicorex_machine=<UNICORE/X host>

UNICORE/X listener port (check unicorex/conf/tsi.config variable ``CLASSICTSI.replyport``
tsi.unicorex_port=7654

TSI listener port (check unicorex/conf/xnjs_legacy.xml variable ``CLASSICTSI.port``
tsi.my_port=4433

UNICORE/X configuration

Edit unicorex/conf/main.config and check that the tsi.config file
is included:

read TSI-related settings
$include.TSI conf/tsi.config

Edit unicorex/conf/tsi.config. Check the filespace location,
this is where the local job directories will be created. On a cluster,
these have to be on a shared part of the filesystem. Also, the
filespace location has to be read/write/executable for the current
user. If you wish to avoid a world-executable directory, it is possible
to use a per-user location, like $HOME/UNICORE_Jobs.

Check the CLASSICTSI related properties. Set the correct value for
the machine and the ports (these can usually be left at their default
values). The CLASSICTSI.machine property is a comma separated list of
machines names or IP addresses. Optionally, a port number can be added
to each entry, separated from the machine by a colon. UNICORE/X will
establish connections to each of these machines and ports in a
round-robin fashion to ensure that jobs can be submitted and job
statuses retrieved even if one of the TSI instances is
unavailable. Should the port not be given along with the machine,
CLASSICTSI.port will be used as a default.

Here is an small example:

XNJS.filespace=$HOME/UNICORE_Jobs/
XNJS.idbfile=/opt/unicore/unicorex/conf/simpleidb

CLASSICTSI.machine=login.mycluster.com
CLASSICTSI.port=4433
CLASSICTSI.replyport=7654
CLASSICTSI.priveduser=unicore

XNJS.staging.wget=wget --no-check-certificate

Communication parameters

Some additional parameters exist for tuning the UNICORE/X-TSI communication.

Table 16 UNICORE/X-TSI communication settings

	Property name

	Range of
values

	Default value

	Description

	CLASSICTSI.BUFFERSIZE

	integer

	1000000

	Buffersize for filetransfers in bytes

	CLASSICTSI.socket.
timeout

	integer

	300000

	Socket timeout in milliseconds

	CLASSICTSI.socket.
connect.timeout

	integer

	10000

	Connection timeout in milliseconds

Tuning the batch system settings

UNICORE uses the normal batch system commands (e.g. qstat) to get the
status of running jobs. There is a special case if a job is not
listed in the qstat output. UNICORE will then assume the job is
finished. However, in some cases this is not true, and UNICORE will
have a wrong job status. To work around, there is a special property

how often UNICORE/X will re-try to get the status of a job
in case the job is not listed in the status listing
CLASSICTSI.statusupdate.grace=2

If the value is larger than zero, UNICORE will re-try to get the job status.

Hint

When changing TSIs, it’s a good idea to remove the UNICORE/X state and any
files before restarting. See The UNICORE persistence layer for details.

Enabling SSL for the UNICORE/X to TSI communication

The UNICORE/X server can be set up to use SSL for communicating with
the UNICORE TSI. On the UNICORE/X side, this is very simple to switch
on. In the tsi.config file, set the following property to false (by
default it is set to true):

enable SSL -
CLASSICTSI.ssl.disable=false

To setup the TSI side, please refer to the TSI manual!

Using an SSH tunnel for the UNICORE/X to TSI communication

In the special case that the callback port on the UNICORE/X server is not
accessible from the TSI server, you may want to use an SSH tunnel configuration.
For example, this case occurs if the TSI is running in a different
location (e.g. an Amazon cloud) than the UNICORE/X server.

We recommend using the tool autossh, and adding the tunnel setup to to your
UNICORE/X start script.

Here is an example how to do this:

killall -g autossh
autossh -M 0 -f -o "ExitOnForwardFailure=yes" -o "ServerAliveInterval 30"
 -o "ServerAliveCountMax 3" -4 -N
 -L 4433:localhost:4433
 -R 7654:localhost:7654
 -i path_to_key remoteuser@remote.server.org

TSI configuration parameter reference

Here is a full list of TSI-related parameters:

	Property name

	Type

	Default value / mandatory

	Description

	CLASSICTSI.BUFFERSIZE

	integer >= 1

	1048576

	Buffer size (in bytes) for transferring data from/to the TSI.

	CLASSICTSI.CD

	string

	cd

	Unix ‘cd’ command.

	CLASSICTSI.CHGRP

	string

	/bin/chgrp

	Unix ‘chgrp’ command.

	CLASSICTSI.CHMOD

	string

	/bin/chmod

	Unix ‘chmod’ command.

	CLASSICTSI.CP

	string

	/bin/cp

	Unix ‘cp’ command.

	CLASSICTSI.FSID

	string

	
	TSI filesystem identifier which uniquely identifies the file system. The default value uses the ‘CLASSICTSI.machine’ property.

	CLASSICTSI.GROUPS

	string

	groups

	Unix ‘groups’ command.

	CLASSICTSI.KILL

	string

	(too complex to show here)

	Unix command template for aborting a process and its child processes.

	CLASSICTSI.LN

	string

	/bin/ln -s

	Unix ‘ln’ command.

	CLASSICTSI.MKDIR

	string

	/bin/mkdir -p

	Unix directory creation command.

	CLASSICTSI.MV

	string

	/bin/mv

	Unix ‘mv’ command.

	CLASSICTSI.RM

	string

	/bin/rm

	Unix ‘rm’ command.

	CLASSICTSI.RMDIR

	string

	/bin/rm -rf

	Unix directory removal command.

	CLASSICTSI.UMASK

	string

	umask

	Unix ‘umask’ command.

	CLASSICTSI.interactive_execution.disable

	[true, false]

	false

	Disable execution of user commands on the TSI node.

	CLASSICTSI.jobLimit

	integer number

	-1

	Limit number of running jobs (useful with NOBATCH TSI, -1 = no limit)

	CLASSICTSI.limitTSIConnections

	integer number

	-1

	Limit the total number of TSI worker processes created by this UNICORE/X (‘-1’ means no limit).

	CLASSICTSI.machine

	string

	localhost

	TSI host(s) or IP address(es). Specify multiple hosts in the format ‘machine1[:port1],machine2[:port2],…’

	CLASSICTSI.pooledTSIConnections

	integer >= 1

	4

	How many TSI worker processes per TSI host to keep (even if idle).

	CLASSICTSI.port

	integer >= 1

	4433

	TSI port to connect to.

	CLASSICTSI.priveduser

	string

	unicore

	Account used for getting statuses of all batch jobs (cannot be ‘root’).

	CLASSICTSI.replyport

	integer >= 1

	7654

	Reply port on UNICORE/X server.

	CLASSICTSI.reservationAdminUser

	string

	unicore

	Account used for making reservations (cannot be ‘root’). If null, the current user’s login will be used.

	CLASSICTSI.reservationEnabled

	[true, false]

	false

	Whether to enable the reservation interface.

	CLASSICTSI.socket.connect.timeout

	integer >= 0

	10

	Connection timeout (seconds) on when establishing (or checking) the TSI connection. Set to ‘0’ for no timeout.

	CLASSICTSI.socket.no_check_matching_ips

	[true, false]

	false

	Disable checking if IP address(es) of command/data socket callbacks are as expected.

	CLASSICTSI.socket.timeout

	integer >= 0

	180

	Read timeout (seconds) on the TSI connection. Set to ‘0’ for no timeout.

	CLASSICTSI.ssl.disable

	[true, false]

	true

	Whether to disable SSL for the TSI-UNICORE/X connection.

	CLASSICTSI.statusupdate.grace

	integer >= 1

	2

	How many times the XNJS will re-check job status in case of a ‘lost’ job.

	CLASSICTSI.statusupdate.interval

	integer >= 1

	10000

	Interval (ms) for updating job statuses on the batch system.

Operation without a UNICORE TSI

In some situations (e.g. in a Windows-only environment) you will not
use the UNICORE TSI, which is designed for multi-user Unix
environments. UNICORE/X can run code in an embedded mode on the
UNICORE/X machine. Note that this is without user switching, and
inherently not secure as user code can access potentially sensitive
information, such as configuration data. Also, there is no separation
of users.

Embedded mode is enabled in the tsi.config file by setting

coreServices.targetsystemfactory.tsiMode=embedded

The embedded mode can be configured with a set of properties which are
listed in the following table:

	Property name

	Type

	Default value / mandatory

	Description

	XNJS.localtsi.jobLimit

	integer number

	0

	Maximum number of concurrent jobs, if set to a value >0. Default is no limit.

	XNJS.localtsi.shell

	string

	/bin/bash

	Default UNIX shell to use (if shell is used).

	XNJS.localtsi.useShell

	[true, false]

	true

	Should a UNIX shell be used to execute jobs.

	XNJS.localtsi.workerThreads

	integer >= 1

	4

	Number of worker threads used to execute jobs.

[image: idb-img] The IDB

The UNICORE IDB (Incarnation DataBase) contains information on the
target system capabilities (like number of nodes, CPUs, etc.) and
allowing to check client resource requests against these.

The second IDB function is to define abstract application definitions
that are then mapped onto concrete executables. This process (called
incarnation) is performed by the XNJS component.

Defining the IDB location

The IDB file is defined by the property XNJS.idbfile, which must
point to a file or directory on the UNICORE/X machine which is
readable by the UNICORE/X process.

Using an IDB directory

While the IDB can be put into a single file, it can be convenient to
use multiple files. In this case, the property XNJS.idbfile points to
a directory. The information from all files in this directory is merged.

When using a directory, you can optionally specify a main IDB file
containing applications, resources, properties, etc. From other files,
only Applications will be read. A main IDB file is defined via
XNJS.idbfile.main.

User-specific applications (IDB extensions)

Sometimes it is required to define special applications for (groups
of) users, and even let users define their own applications. This
means that the set of available applications differs between users.

User specific applications can be defined using additional properties,
for example like this:

XNJS.idbfile.ext.1=/opt/staff/unicore/*.xml
XNJS.idbfile.ext.2=$HOME/.unicore/*.xml
XNJS.idbfile.ext.3=$WORK/projects/apps/*.xml

These paths are resolved on the TSI machine, NOT on UNICORE/X. As you
can see, they can contain variables (using $VARIABLE syntax WITHOUT
curly braces!). Make sure that the numbering is consistent
(ext.1, ext.2, …).

Caution

Some UNICORE features such as brokering in workflows might not (yet) work with
user-specific applications!

Examples for IDB setup

Here are a few common IDB config examples.

Single IDB file (default):

XNJS.idbfile=/etc/unicore/unicorex/simpleidb

IDB directory, all files are merged:

XNJS.idbfile=/etc/unicore/unicorex/idb/

IDB directory, main file defined, read apps from all other files:

XNJS.idbfile=/etc/unicore/unicorex/applications/
XNJS.idbfile.main=/etc/unicore/unicorex/simpleidb

IDB directory, main file defined, user-specific extension:

XNJS.idbfile=/etc/unicore/unicorex/applications/
XNJS.idbfile.main=/etc/unicore/unicorex/simpleidb
XNJS.idbfile.ext.1=$HOME/.unicore/apps/*.xml

IDB syntax description

Ihe IDB is written in JSON format.

Note

The older XML format was deprecated in UNICORE 8 and removed in UNICORE 9.

The IDB contains Partitions, Applications, Submit/Execute script
templates and Info elements, all of which will be described
below. Additionally, the administrator can customize the script
template that is used to perform special actions, such as loading modules,
or changing the shell (please read Script templates for more information).

Applications can also be defined in separate files (if using a directory)

{
 "Partitions" : {},

 "Info" : {},

 "Applications" : [],

 "ExecuteScriptTemplate" : "...",

 "SubmitScriptTemplate" : "...",
}

Partitions

Each Partition corresponds essentially to a batch queue. Each
partition may have its own runtime limits, number of CPUs etc.

Let’s look at an example first. In the IDB file

{
"Partitions": {

 "batch" : {
 "IsDefaultPartition": "true",
 "Description": "Default batch queue",
 "OperatingSystem": "LINUX",
 "OperatingSystemVersion": "4.15.0-62-generic / Ubuntu 18.04",
 "CPUArchitecture": "x86_64",
 "Resources": {
 "Nodes": "1-64:1",
 "CPUsPerNode": "4:4",
 "TotalCPUs": "4-256",
 "Runtime": "1-72000:3600",
 },
 },

 "dev" : {
 "Description": "Development queue",
 "OperatingSystem": "LINUX",
 "CPUArchitecture": "x86_64",
 "Resources": {
 "Nodes": "1-4:1",
 "CPUsPerNode": "4:4",
 "TotalCPUs": "4-16",
 "Runtime": "1-3600:10m",
 },
 },

}

If you have more than one Partition, make sure to set one as the default using
the element

"IsDefaultPartition": "true",

Resources

Here you can specify things like number of nodes, job runtime (wall
time!) CPUs per node, total number of CPUs, etc.

Integer-valued capabilities are specified with a range and an
optional default, for example,

"Nodes" : "1-64:1",

or in a more verbose style:

 "Nodes" : {
 "Range": "1-64",
 "Default": "1",
}

If a default is specified, the resource is part of the site’s default
resource set, and a value will be always be sent to the TSI.

If NO default is specified, the resource request will only be sent to
the TSI if the user has requested it in her job.

A number of standard resource names exist, which a system should
adhere to, in order to make user jobs as portable as possible. You may
choose to not specify some of them, if they do not make sense on your
system. For example, some sites do not allow the user to explicitely
select nodes and processors per node, but only total number of CPUs,
or only Nodes.

	Runtime

	The wall clock time (integer). You can use the usual units (“m”, “h”, “d”),
e.g. “12h”

	Nodes

	The number of nodes (integer)

	CPUsPerNode

	The number of CPUs per node (integer)

	TotalCPUs

	The total number of CPUs (integer)

	MemoryPerNode (or just Memory)

	The amount of memory per node in bytes (integer). You can use the usual units
(“k”, “M”, G”), e.g. “128G”

	NodeConstraints

	Identifiers for requesting specific node types
(list of values)

	QoS

	Quality of service required by the job
(list of values)

"NodeConstraints" : {
 "Type": "CHOICE",
 "AllowedValues" : ["gpu", "mc"],
}

Support for array jobs

Many resource managers support submission of job arrays, i.e. multiple similar jobs
are submitted at the same time, where the user can control two things:
how many jobs are submitted, and how many jobs run at the same time.

To enable this feature, the site administrator needs to define two resources
in the IDB partition(s), named ArraySize and ArrayLimit.

Consider the following example:

"ArraySize" : "1-100:1",
"ArrayLimit" : "1-100:10",

The array size and limit are passed to the TSI via

#TSI_ARRAY 0-99
#TSI_ARRAY_LIMIT 10

The TSI also sets an environment variable in the job script that corresponds to the task id, i.e.
the ID of the current job instance:

UC_ARRAY_TASK_ID = "22"; export UC_ARRAY_TASK_ID

Other types of resources

Most HPC sites have special settings that cannot be mapped to the
generic resource elements shown in the previous section. Therefore,
UNICORE allows to define custom system settings and allow users to
request these in their UNICORE jobs.

Custom resources have a name, and a short specification including their
type and range and/or allowed values.

UNICORE/X will send such resource requests to the TSI in upper case,
with a “#TSI_SSR_” prefix, e.g.

#!/bin/sh
#TSI_SUBMIT
...
#TSI_SSR_GPUS 4
....

Custom resource definitions support the following fields:

	Type

	int (default), double, string, choice or boolean

	Range

	(‘int’, ‘float’) allowed range of the form “lower-upper”

	Default

	optional default value

	AllowedValues

	(for ‘choice’) list of strings

	Description

	optional description

Here are a few examples:

 "LicenseKey" : {
 "Type": "String"
}

"UserSupportClass" : {
 "Type": "CHOICE",
 "AllowedValues" : ["bronze", "silver", "gold"],
 "Default": "bronze"
}

"ReservedBandwidth" : {
 "Type": "int",
 "Range" "1-100",
}

For “int” resources, you can alternatively use the abbreviated definition, as shown above
for the standard resources (such as ‘Nodes’). For example,

"FPGAs" : "0-1024"

Script templates

If you need to modify the scripts that are generated by UNICORE/X and sent to the TSI,
you can achieve this using two entries in the IDB.

{

"SubmitScriptTemplate" : ["#!/bin/sh", "#COMMAND", "#RESOURCES", "#SCRIPT"],

"ExecuteScriptTemplate" : ["#!/bin/sh", "#COMMAND" "#RESOURCES", "#SCRIPT"],

}

You can give these as an array of strings (lines), or as a single string with
embedded \n line breaks.

The SubmitScriptTemplate is used for batch job submission, the ExecuteScriptTemplate is used for
everything else (e.g. creating directories, resolving user’s home, etc).

UNICORE/X generates the TSI script as follows:

	“#COMMAND” entry will be replaced by the action for the
TSI, e.g. “#TSI_SUBMIT” (for submit)

	“#RESOURCES” will be replaced by the
resource requirements, e.g. “#TSI_NODES=...”

	“#SCRIPT” will be the user script / the executed command

Modifying these templates can be used to perform special actions, such as loading modules,
or changing the shell (but use something compatible to ‘sh’). For example, to add some
special directory to the path for user scripts submitted in batch mode, you could use

"SubmitScriptTemplate" : [
 "#!/bin/bash",
 "#COMMAND",
 "#RESOURCES",
 "LD_LIBRARY_PATH= $LD_LIBRARY_PATH:/opt/openmpi-2.1/lib; export LD_LIBRARY_PATH",
 "PATH=$PATH:/opt/openmpi-2.1/bin; export PATH",
 "#SCRIPT"
],

Attention

Make sure that the commands added to the ExecuteScriptTemplate DO NOT generate
any output on standard out or standard error! Always redirect any output to /dev/null.

For example,

"ExecuteScriptTemplate" : [
"#!/bin/bash",
"#COMMAND",
"nmodule load java-11 > /dev/null 2>&1",
"#SCRIPT"]

Info

Simple key-value pairs can be entered into the IDB which are then
accessible client-side. This is very useful for conveying
system-specifics to client code and also to users.

Here is an example:

{
 "Info" : {
 "ssh-host" : "login.cluster.com",
 "admin-email" : "root@cluster.com",
 },
}

These pieces of information are accessible client side as part of the
target system properties.

Summary

Translation of standard resource names to TSI parameters:

	Resource

	TSI parameter

	Name of the selected partition

	#TSI_QUEUE

	Accounting project (from job)

	#TSI_PROJECT

	Runtime

	#TSI_TIME

	Nodes

	#TSI_NODES

	CPUsPerNode

	#TSI_PROCESSORS_PER_NODE

	TotalCPUs

	#TSI_TOTAL_PROCESSORS

	NodeConstraints

	#TSI_BSS_NODES_FILTER

	QoS

	#TSI_QOS

	MemoryPerNode (or Memory)

	#TSI_MEMORY

	ArraySize

	#TSI_ARRAY

	ArrayLimit

	#TSI_ARRAY_LIMIT

	Other resources

	#TSI_SSR_<name>

IDB Application definitions

Apart from describing the available queues and their associated
resources, the most important functionality of the IDB is defining
applications.

Applications can be defined in the main IDB file

{
 Applications: [
 { Name: Date, ... },
 { Name: "Python script", ... },
],
}

or in separate files (one application per file).

Here is a quick overview of the available elements, which will
be documented in detail below:

Table 17 JSON IDB Application

	Tag

	Type

	Description

	Optional/
mandatory

	Name

	String

	Application name

	Mandatory

	Version

	String

	Application version

	Mandatory

	Description

	String

	Application description

	Optional

	Executable

	String

	Executable

	Mandatory

	Arguments

	List of
strings

	Command line arguments

	Optional

	Environment

	Map of strings

	Environment values

	Optional

	PreCommand

	String

	Pre-processing executed on the login
node

	Optional

	PostCommand

	String

	Post-processing executed on the login
node

	Optional

	Prologue

	String

	Pre-processing in the batch script

	Optional

	Epiloge

	String

	Post-processing in the batch script

	Optional

	Parameters

	Map

	Metadata for application arguments /
parameters

	Optional

	Resources

	Map

	Application-specific resource requests

	Optional

	RunOnLoginNode

	“true”/
“false”

	Run job on login node

	Optional,
default=false

	IgnoreNonZeroExitCode

	“true”/
“false”

	Don’t fail the job if app exits with
non-zero exit code

	Optional,
default=true

Here is an example:

{
 Name: "Python script",
 Version: "3.4",
 Description: "Python 3 interpreter",
 Executable: "/usr/bin/python3",
 Arguments: [
 "-d$DEBUG?",
 "-vVERBOSE?",
 "$OPTIONS?",
 "$SOURCE?",
 "$ARGUMENTS",
],

 Parameters: {
 "SOURCE": {Type: "filename"},
 "ARGUMENTS": {Type: "string"},
 "DEBUG": {Type: "boolean"},
 "VERBOSE": {Type: "boolean"},
 "OPTIONS": {Type: "string"},
 },

 Prologue: "module load python3",

 Resources: {
 Nodes: 1,
 }
}

Basic Application definition

Here is an example entry for the Date application on a UNIX system:

{
 Name: Date,
 Version: 1.0,
 Executable: "/bin/date",
}

Invoking the Date application will be simply mapped to an invocation of /bin/date.

Arguments

Command line arguments are specified using Arguments tags:

{
 Name: LS,
 Version: 1.0,
 Executable: /bin/ls
 Arguments: ["-l", "-t",],
}

This would result in a command line /bin/ls -l -t.

Conditional Arguments

The job submission from a client usually contains environment variables to be
set when running the application. It often happens that a certain argument
should only be included if a corresponding environment variable is set.
This can be achieved by using conditional arguments in the incarnation
definition. Conditional arguments are indicated by a quastion mark ?
appended to the argument value:

{
 Name: JAVA,
 Version: "11.0",
 Description: "Java virtual machine",
 Executable: "/usr/bin/java",

 Arguments: ["-cp$CLASSPATH?",],

}

Here, -cp$CLASSPATH? is an optional argument.

If the user’s job submission now includes a environment variable named
CLASSPATH the incarnated commandline will be
/usr/bin/java -cp$CLASSPATH ..., otherwise just /usr/bin/java

This allows very flexible incarnations.

Environment variables

To set environment variables, add a map

{
 Name: LS,
 Version: 1.0,
 Executable: "/bin/ls",

 Environment: {
 "PATH": "/opt/myapp:/usr/bin:$PATH",
 "MYENV": "value",
 },
}

Pre and post-commands

Sometimes it is useful to be able to execute one or several commands
before or after the execution of an application, for example, to
perform some pre- or postprocessing. These pre/post commands are executed
on a login node (i.e. they are not part of the batch job).

{
 Name: SomeSimulation,
 Version: "1.0",
 Executable: "/usr/bin/simulation",

 PreCommand: "/opt/licenses/aquire_license",

 PostCommand: "/opt/licenses/release_license"
}

Prologue and epilogue

These commands will be executed as part on a batch node of the user’s job script,
and are placed before/after the application executable command.

{
 Name: SomeSimulation,
 Version: "1.0",
 Executable: "/usr/bin/simulation",
 Prologue: "module load some_module",
 Epilogie: "",
}

Interactive execution when using a batch system

If an application should not be submitted to the batch system, but be run on
the login node (i.e. interactively), a flag in the IDB can be set:

{
 Name: SomeApp,
 Version: 1.0,

 # instruct UNICORE to run the application on a login node
 RunOnLoginNode: true,

}

Exit code handing

By default, a UNICORE job will be set to NOT_SUCCESSFUL if the application exits
with a non-zero exit code.
If you want to change this behaviour, you can set a flag

{
 Name: SomeApp,
 Version: 1.0,

 # instruct UNICORE to NOT fail if the application
 # exits with non-zero exit code

 IgnoreNonZeroExitCode: true,

}

Application argument metadata

For client components it can be useful to have a description of an
application in terms of its arguments. This allows clients to automatically
build a nice GUI for the application.

{
 Name: SomeApp,
 Version: 1.0,

 Parameters: {

 SOURCE:{
 Type: filename,
 Description: "The input file",
 },

 VERBOSE:{
 Type: boolean,
 Description: "Verbose mode",
 },

 PRECISION:{
 Type: choice,
 Description: "Computational precision",
 ValidValues: [
 "sloppy", "normal", "pedantic",
],
 },

 },

}

The meaning of the attributes should be fairly obvious:

	the Description attribute contains a human-readable description of the argument.

	the Type attribute can have the values (lower/upper case does not
matter) “string”, “boolean”, “int”, “double”, “filename” or
“choice”. In the case of “choice”, the ValidValues attribute is
used to specify the list of valid values. The type filename is used
to specify that this is an input file for the application, allowing
clients to enable special actions for this.

	The ValidValues attribute can be used to limit the range of valid
values, depending on the Type of the argument. The processing of
this attribute is client-dependent.

Per-application resource requirements

If the application requires any default resources, like particular
node constraints, or a specific queue, you can add resource requests
in the IDB.

For example,

{
 Name: SomeSimulation,
 Version: "3.0",

 Resources: {
 Nodes: "2",
 NodeConstraints: "amd",
 }
}

Note that the user job can override these, i.e. if the user requests
different values for the requested resources, the values from the user
job will be used.

[image: data-transfer-img] Data staging

When executing user jobs, UNICORE/X also performs data staging,
i.e. getting data from remote locations before starting the job, and
uploading data when the job has finished. A variety of protocols
can be used for data movement, including UNICORE-specific protocols such
as BFT or UFTP, but also standard protocols like ftp and scp.

Some of these have additional configuration options, which
are given in this section.

SCP support

UNICORE supports file staging in/out using SCP with username/password
authentication. The source/target URL schema is scp://.

Site setup

At a site that wishes to support SCP, the UNICORE server needs to
be configured with the path of an scp wrapper script that can
pass the password to scp, if necessary.

If not already pre-configured during installation, you can configure this
path manually in the XNJS config file:

scp wrapper script
XNJS.staging.scpWrapper=/path/to/scp-wrapper.sh

SCP wrapper script

A possible scp wrapper script written in TCL is provided in the
extras folder of the core server bundle, for your convenience it is
reproduced here. It requires TCL and Expect. You may need to modify
the first line depending on how Expect is installed on your system.

#!/usr/bin/expect -f

this is a wrapper around scp
#
it automates the interaction required to enter the password.
#
Prerequisites:
The TCL Expect tool is used.
#
Arguments:
1: source, 2: target, 3: password

set source [lindex $argv 0]
set target [lindex $argv 1]
set password [lindex $argv 2]
set timeout 10

start the scp process
spawn scp "$source" "$target"

handle the interaction
expect {
 "passphrase" {
 send "$password\r"
 exp_continue
 } "password:" {
 send "$password\r"
 exp_continue
 } "yes/no)?" {
 send "yes\r"
 exp_continue
 } timeout {
 puts "Timeout."
 exit
 } -re "." {
 exp_continue
 } eof {
 exit
 }
}

Similar scripts may also be written in other scripting languages such
as Python.

GridFTP

UNICORE can use GridFTP client tools for stage-in/stage-out provided
the client uploads the required proxy certificate. The proxy cert is
expected in a file .proxy in the job’s working directory.

GridFTP usage can be customised using two settings in tsi.config.

name / path of the executable
XNJS.staging.gridftp=/usr/local/bin/globus-url-copy

additional parameters for globus-url-copy
XNJS.staging.gridftpParameters=

Configuration reference

The configuration settings related to data staging are summarized in the following
table:

	Property name

	Type

	Default value / mandatory

	Description

	XNJS.staging.addWaitingLoop

	[true, false]

	false

	Whether to add a waiting loop for files to appear on shared filesystems.

	XNJS.staging.curl

	string

	
	Location of the ‘curl’ executable used for FTP stage-ins. If null, Java code will be used for FTP.

	XNJS.staging.filesystemGraceTime

	integer >= 1

	10

	Grace time (in seconds) when waiting for files to appear on shared filesystems.

	XNJS.staging.gridftp

	string

	globus-url-copy

	Location of the ‘globus-url-copy’ executable used for GridFTP staging.

	XNJS.staging.gridftpParameters

	string

	empty string

	Additional options for ‘globus-url-copy’.

	XNJS.staging.scpWrapper

	string

	scp-wrapper.sh

	Location of the wrapper script used for scp staging.

	XNJS.staging.threads

	integer >= 1

	4

	Number of worker threads to use for data staging.

	XNJS.staging.wget

	string

	
	Location of the ‘wget’ executable used for HTTP stage-ins. If null, Java code will be used for HTTP.

	XNJS.staging.wgetParameters

	string

	
	Additional options for ‘wget’.

[image: uftp-img] UFTP setup

UFTP is a high-performance file transfer protocol. For using UFTP as
a data staging and file upload/download solution in UNICORE, a
separate server (UFTPD [https://uftp-docs.readthedocs.io/en/latest/admin-docs/uftpd/index.html]) is required.
This is installed on a host with direct access to the file system, usually this is a cluster
login node, but it can also be a separate host.

In a UFTP transfer [https://uftp-docs.readthedocs.io/en/latest/index.html], one side acts
as a client and the other side is the uftpd server. UNICORE/X will run the client code via the
TSI (recommended) or in-process (with lower performance).

For details on how to install the UFTPD server please refer to the
separate UFTPD manual [https://uftp-docs.readthedocs.io/en/latest/admin-docs/uftpd/manual.html], which provides all
information required to install and configure the UFTPD.

Note

If UFTPD is not running on the same host(s) as the TSI,
you will need to copy the UTFPD libs and client executable to
the TSI machine(s).

The minimal required UNICORE/X configuration consists of
the listen and command addresses of the UFTPD server
and the location of the client executable on the TSI host.

Listener (pseudo-FTP) socket of UFTPD
coreServices.uftp.server.host=uftp.yoursite.edu
coreServices.uftp.server.port=64434

Command socket of UFTPD
coreServices.uftp.command.host=uftp.yoursite.edu
coreServices.uftp.command.port=64435

Full path to the 'uftp.sh' client executable
installed on the TSI node
coreServices.uftp.client.executable=/usr/share/unicore/uftpd/bin/uftp.sh

If you want to run the client code in the UNICORE/X process, set

coreServices.uftp.client.local=true

The following table shows all the available configuration options
for UFTP:

	Property name

	Type

	Default value / mandatory

	Description

	coreServices.uftp.buffersize

	integer >= 1

	128

	File read/write buffer size in kbytes.

	coreServices.uftp.client.host

	string

	null

	Client host. If not set and UFTP client is set to local, then the local interface address will be determined at runtime. If not set and non-local mode is configured, then the TSI machine will be used.

	coreServices.uftp.client.ip_addresses

	string

	null

	Client IP address(es) to send to UFTPD. If not set, the client.host value will be used.

	coreServices.uftp.client.local

	[true, false]

	false

	Controls whether, the Java UFTP client code should be run directly within the JVM, which will work only if the UNICORE/X has access to the target file system, or, if set to false, in the TSI.

	coreServices.uftp.command.host

	string

	localhost

	The UFTPD command host.

	coreServices.uftp.command.port

	integer [1 – 65535]

	64435

	The UFTPD command port.

	coreServices.uftp.command.socketTimeout

	integer [0 – 300]

	10

	The timeout (in seconds) for communicating with the command port.

	coreServices.uftp.command.sslDisable

	[true, false]

	false

	Allows to disable SSL on the command port (useful for testing).

	coreServices.uftp.disableSessionMode

	[true, false]

	false

	Controls multi-file transfers should be done one by one (NOT recommended).

	coreServices.uftp.enable

	[true, false]

	true

	Controls whether UFTP should be enabled for this server.

	coreServices.uftp.encryption

	[true, false]

	false

	Controls whether encryption should be enabled by default for server-server transfers.

	coreServices.uftp.rateLimit

	integer number

	0

	Limit the bandwidth (bytes per second) used by a single transfer (0 means no limit).

	coreServices.uftp.server.host

	string

	
	UFTPD listen host. If this is not set, UFTP is disabled.

	coreServices.uftp.server.port

	integer [1 – 65535]

	64434

	UFTPD listen port.

	coreServices.uftp.streams

	integer number

	1

	Requested number of parallel data streams.

	coreServices.uftp.streamsLimit

	integer >= 1

	4

	Server limit for number of streams (per client connection).

Configuring multiple UFTPD servers

Since UNICORE 8.1, you can optionally configure multiple UFTPD servers
that will then be used in a round-robin fashion, to increase
performance and scalability.

The configuration is similar to the simple case, but you can
have multiple blocks of servers.

As an example, consider this configuration of two UFTPD servers:

coreServices.uftp.1.server.host=uftp.yoursite.edu
coreServices.uftp.1.server.port=64434
coreServices.uftp.1.command.host=uftp.yoursite.edu
coreServices.uftp.1.command.port=64435

coreServices.uftp.2.server.host=uftp-2.yoursite.edu
coreServices.uftp.2.server.port=64434
coreServices.uftp.2.command.host=uftp-2.yoursite.edu
coreServices.uftp.2.command.port=64435

Full path to the 'uftp.sh' client executable
installed on the TSI node
coreServices.uftp.client.executable=/usr/share/unicore/uftpd/bin/uftp.sh

Use consecutive numbers (1, 2, …) to define servers.

[image: data-management-img] Configuration of storages

A UNICORE/X server can make storage systems (e.g. file systems)
accessible to users in several ways:

	storages endpoints can be defined which are available even if there is no compute service;

	storages can be attached to compute services;

	each job has a working directory, which is exposed as a storage
instance and can be freely accessed using a UNICORE client;

	the StorageFactory service allows users to create dynamic storage instances, which is very
useful if the UNICORE workflow system is used.

Storages have additional features which are covered in other sections of this
manual:

	Metadata management is covered in Metadata service

	Data-triggered processing is described in Data-triggered processing

Configuring storage services

Storage services are created on server startup and published in the registry.
They are independent of any compute services and accessible for all users.

Note

Service accessibility does not imply file system accessibility. The
file system access control is still in place, so users must have the
appropriate Unix permissions to access a storage.

The basic property controls which storages are enabled:

coreServices.sms.storage.enabledStorages=HOME WORK SHARE2 ...

Each enabled storage is configured using a set of properties:

	Property name

	Type

	Default value / mandatory

	Description

	coreServices.sms.storage.N.allowTrigger

	[true, false]

	true

	(if creating via factory) If user is allowed to enable the triggering feature.

	coreServices.sms.storage.N.allowUserDefinedPath

	[true, false]

	true

	(if creating via factory) Whether the allow the user to set the storage base directory.

	coreServices.sms.storage.N.checkExistence

	[true, false]

	true

	Whether the existence of the base directory should be checked when creating the storage.

	coreServices.sms.storage.N.class

	Class extending eu.unicore.uas.impl.sms.SMSBaseImpl

	
	Storage implementation class used (and mandatory) in case of the CUSTOM type.

	coreServices.sms.storage.N.cleanup

	[true, false]

	false

	Whether files of the storage should be removed when the storage is destroyed. This is mostly useful for storage factories.(runtime updateable)

	coreServices.sms.storage.N.defaultUmask

	integer number

	027

	Default (initial) umask for files in the storage. Must be an octal number.

	coreServices.sms.storage.N.description

	string

	Filesystem

	Description of the storage. It will be presented to the users.(runtime updateable)

	coreServices.sms.storage.N.disableMetadata

	[true, false]

	false

	Whether the metadata service should be disabled for this storage.

	coreServices.sms.storage.N.enableTrigger

	[true, false]

	false

	Whether the triggering feature should be enabled for this storage.

	coreServices.sms.storage.N.filterFiles

	[true, false]

	false

	If set to true then this SMS will filter returned files in response of the ListDirectory command: only files owned or accessible by the caller will be returned.(runtime updateable)

	coreServices.sms.storage.N.infoProviderClass

	Class extending eu.unicore.uas.impl.sms.StorageInfoProvider

	eu.unicore.uas.impl.sms.DefaultStorageInfoProvider

	(Very) advanced setting, providing information about storages produced by the SMS factory.

	coreServices.sms.storage.N.name

	string

	
	Storage name. If not set then the internal unique identifier is used.

	coreServices.sms.storage.N.path

	string

	
	Denotes the storage base path.

	coreServices.sms.storage.N.protocols

	string

	
	(DEPRECATED, ignored)(runtime updateable)

	coreServices.sms.storage.N.settings..*

	string can have subkeys

	
	Useful for CUSTOM storage types: allows to set additional settings (if needed) by such storages. Please refer to documentation of a particular custom storage type for details. Note that while in general updates of the properties at runtime are propagated to the chosen implementation, it is up to it to use the updated values or ignore changes.(runtime updateable)

	coreServices.sms.storage.N.triggerUserID

	string

	
	For data triggering on shared storages, use this user ID for the controlling process.

	coreServices.sms.storage.N.type

	string

	
	Storage type. FIXEDPATH: mapped to a fixed directory, VARIABLE: resolved using an environmental variable lookup, CUSTOM: specified class is used.

	coreServices.sms.storage.N.workdir

	string

	
	(DEPRECATED, use ‘path’ instead)

For example, to define a storage for accessing the user’s HOME and some shared path:

coreServices.sms.storage.HOME.name=HOME
coreServices.sms.storage.HOME.type=HOME
coreServices.sms.storage.HOME.description=User's HOME

coreServices.sms.storage.WORK.name=WORK
coreServices.sms.storage.WORK.description=Shared projects workspace
coreServices.sms.storage.WORK.path=/mnt/gpfs/projects
coreServices.sms.storage.WORK.defaultUmask=07

The name parameter will be used as the storage’s service ID. This means that the URL
to access these storages will be something like

https://<site_address>/rest/core/storages/HOME

https://<site_address>/rest/core/storages/WORK

and via the SOAP/XML interfaces

https://<site_address>/services/StorageManagement?res=HOME

https://<site_address>/services/StorageManagement?res=WORK

Usually, the name property is not needed, if you set it it should
match the ID to avoid confusion.

The other storage properties (see the previous section) are also accepted!

Configuring storages attached to TargetSystem instances

Each TargetSystem instance can have one or more storages attached to
it. Note that this is different case from the shared storages which
are not attached to any particular TargetSystem. The practical
difference is that to use storages attached to a TargetSystem, a user
must first create one.

By default, NO storages are created.

For example, to allows users access their home directory on the target system,
you need to add a storage. This is done using configuration entries in uas.config:

	Property name

	Type

	Default value / mandatory

	Description

	coreServices.targetsystem.storage.N.allowTrigger

	[true, false]

	true

	(if creating via factory) If user is allowed to enable the triggering feature.

	coreServices.targetsystem.storage.N.allowUserDefinedPath

	[true, false]

	true

	(if creating via factory) Whether the allow the user to set the storage base directory.

	coreServices.targetsystem.storage.N.checkExistence

	[true, false]

	true

	Whether the existence of the base directory should be checked when creating the storage.

	coreServices.targetsystem.storage.N.class

	Class extending eu.unicore.uas.impl.sms.SMSBaseImpl

	
	Storage implementation class used (and mandatory) in case of the CUSTOM type.

	coreServices.targetsystem.storage.N.cleanup

	[true, false]

	false

	Whether files of the storage should be removed when the storage is destroyed. This is mostly useful for storage factories.(runtime updateable)

	coreServices.targetsystem.storage.N.defaultUmask

	integer number

	027

	Default (initial) umask for files in the storage. Must be an octal number.

	coreServices.targetsystem.storage.N.description

	string

	Filesystem

	Description of the storage. It will be presented to the users.(runtime updateable)

	coreServices.targetsystem.storage.N.disableMetadata

	[true, false]

	false

	Whether the metadata service should be disabled for this storage.

	coreServices.targetsystem.storage.N.enableTrigger

	[true, false]

	false

	Whether the triggering feature should be enabled for this storage.

	coreServices.targetsystem.storage.N.filterFiles

	[true, false]

	false

	If set to true then this SMS will filter returned files in response of the ListDirectory command: only files owned or accessible by the caller will be returned.(runtime updateable)

	coreServices.targetsystem.storage.N.infoProviderClass

	Class extending eu.unicore.uas.impl.sms.StorageInfoProvider

	eu.unicore.uas.impl.sms.DefaultStorageInfoProvider

	(Very) advanced setting, providing information about storages produced by the SMS factory.

	coreServices.targetsystem.storage.N.name

	string

	
	Storage name. If not set then the internal unique identifier is used.

	coreServices.targetsystem.storage.N.path

	string

	
	Denotes the storage base path.

	coreServices.targetsystem.storage.N.protocols

	string

	
	(DEPRECATED, ignored)(runtime updateable)

	coreServices.targetsystem.storage.N.settings..*

	string can have subkeys

	
	Useful for CUSTOM storage types: allows to set additional settings (if needed) by such storages. Please refer to documentation of a particular custom storage type for details. Note that while in general updates of the properties at runtime are propagated to the chosen implementation, it is up to it to use the updated values or ignore changes.(runtime updateable)

	coreServices.targetsystem.storage.N.triggerUserID

	string

	
	For data triggering on shared storages, use this user ID for the controlling process.

	coreServices.targetsystem.storage.N.type

	string

	
	Storage type. FIXEDPATH: mapped to a fixed directory, VARIABLE: resolved using an environmental variable lookup, CUSTOM: specified class is used.

	coreServices.targetsystem.storage.N.workdir

	string

	
	(DEPRECATED, use ‘path’ instead)

Here, N stands for an identifier (e.g. 1, 2, 3, …) to distinguish the storages. For example,
to configure three storages (Home, one named TEMP pointing to /tmp and the other named DEISA_HOME
pointing to $DEISA_HOME) you would add the following configuration entries in uas.config:

coreServices.targetsystem.storage.0.name=Home
coreServices.targetsystem.storage.0.type=HOME

coreServices.targetsystem.storage.1.name=TEMP
coreServices.targetsystem.storage.1.type=FIXEDPATH
coreServices.targetsystem.storage.1.path=/tmp

coreServices.targetsystem.storage.2.name=DEISA_HOME
coreServices.targetsystem.storage.2.type=VARIABLE
coreServices.targetsystem.storage.2.path=$DEISA_HOMES

example for a custom SMS implementation
coreServices.targetsystem.storage.3.name=MyStorage
coreServices.targetsystem.storage.3.type=CUSTOM
coreServices.targetsystem.storage.3.path=/
coreServices.targetsystem.storage.3.class=my.custom.sms.ImplementationClass

Controlling target system’s storage resources

By default storage resource names (used in storage address) are formed from
the owning user’s xlogin and the storage type name, e.g. someuser-Home. This is quite useful
as users can write a URL of the storage without prior searching for its address.
However, if the site’s user mapping configuration maps more than one grid certificate to the same
xlogin, then this solution is not acceptable: only the first user connecting would be able to access
her/his storage. This is because resource owners are expressed as grid user names (certificate DNs) and not xlogins.
To have unique, but dynamically created and non user friendly names of storages
(and solve the problem of non-unique DN mappings) set this option in uas.config:

coreServices.targetsystem.uniqueStorageIds=true

Configuring the StorageFactory service

The StorageFactory service allows clients to dynamically create storage instances.
These can have different types, for example, you could have storages on a normal
filesystem and other storages on an S3 cluster.

The basic property controls which storage types are supported:

coreServices.sms.enabledFactories=TYPE1 TYPE2 ...

Each supported storage type is configured using a set of properties:

	Property name

	Type

	Default value / mandatory

	Description

	coreServices.sms.factory.N.allowTrigger

	[true, false]

	true

	(if creating via factory) If user is allowed to enable the triggering feature.

	coreServices.sms.factory.N.allowUserDefinedPath

	[true, false]

	true

	(if creating via factory) Whether the allow the user to set the storage base directory.

	coreServices.sms.factory.N.checkExistence

	[true, false]

	true

	Whether the existence of the base directory should be checked when creating the storage.

	coreServices.sms.factory.N.class

	Class extending eu.unicore.uas.impl.sms.SMSBaseImpl

	
	Storage implementation class used (and mandatory) in case of the CUSTOM type.

	coreServices.sms.factory.N.cleanup

	[true, false]

	false

	Whether files of the storage should be removed when the storage is destroyed. This is mostly useful for storage factories.(runtime updateable)

	coreServices.sms.factory.N.defaultUmask

	integer number

	027

	Default (initial) umask for files in the storage. Must be an octal number.

	coreServices.sms.factory.N.description

	string

	Filesystem

	Description of the storage. It will be presented to the users.(runtime updateable)

	coreServices.sms.factory.N.disableMetadata

	[true, false]

	false

	Whether the metadata service should be disabled for this storage.

	coreServices.sms.factory.N.enableTrigger

	[true, false]

	false

	Whether the triggering feature should be enabled for this storage.

	coreServices.sms.factory.N.filterFiles

	[true, false]

	false

	If set to true then this SMS will filter returned files in response of the ListDirectory command: only files owned or accessible by the caller will be returned.(runtime updateable)

	coreServices.sms.factory.N.infoProviderClass

	Class extending eu.unicore.uas.impl.sms.StorageInfoProvider

	eu.unicore.uas.impl.sms.DefaultStorageInfoProvider

	(Very) advanced setting, providing information about storages produced by the SMS factory.

	coreServices.sms.factory.N.name

	string

	
	Storage name. If not set then the internal unique identifier is used.

	coreServices.sms.factory.N.path

	string

	
	Denotes the storage base path.

	coreServices.sms.factory.N.protocols

	string

	
	(DEPRECATED, ignored)(runtime updateable)

	coreServices.sms.factory.N.settings..*

	string can have subkeys

	
	Useful for CUSTOM storage types: allows to set additional settings (if needed) by such storages. Please refer to documentation of a particular custom storage type for details. Note that while in general updates of the properties at runtime are propagated to the chosen implementation, it is up to it to use the updated values or ignore changes.(runtime updateable)

	coreServices.sms.factory.N.triggerUserID

	string

	
	For data triggering on shared storages, use this user ID for the controlling process.

	coreServices.sms.factory.N.type

	string

	
	Storage type. FIXEDPATH: mapped to a fixed directory, VARIABLE: resolved using an environmental variable lookup, CUSTOM: specified class is used.

	coreServices.sms.factory.N.workdir

	string

	
	(DEPRECATED, use ‘path’ instead)

For example,

coreServices.sms.factory.TYPE1.description=GPFS file system
coreServices.sms.factory.TYPE1.fixedpath=GPFS file system
coreServices.sms.factory.TYPE1.path=/mnt/gpfs/unicore/unicorex-1/storage-factory

if this is set to true, the directory corresponding to a storage instance will
be deleted when the instance is destroyed. Defaults to "true"
coreServices.sms.factory.TYPE1.cleanup=true

allow the user to pass in a path on storage creation. Defaults to "true"
coreServices.sms.factory.TYPE1.allowUserDefinedPath=true

The path parameter determines the base directory used for the storage instances
(i.e. on the backend), and the unique ID of the storage will be appended automatically.

The cleanup parameter controls whether the storage directory will be deleted when the storage
is destroyed.

It is also possible to let the user control the path of the dynamic
storage, by sending a path parameter when creating the storage.
For example, the user can use UCC to create a storage:

$ ucc create-sms path=/opt/projects/shared-data

This will create a storage resource for accessing the given directory.
In this case, there will be no cleanup, and no appended storage ID.

The normal storage properties (see the previous section) are also
accepted: type, class, filterFiles, etc.

If you have a custom storage type, an additional class parameter defines the
Java class name to use (as in normal SMS case). For example,

coreServices.sms.factory.TYPE1.type=CUSTOM
coreServices.sms.factory.TYPE1.class=de.fzj.unicore.uas.jclouds.s3.S3StorageImpl

Configuring the job working directory storage services

For each UNICORE job instance, a storage instance is created,
corresponding to the job’s working directory. In some cases you might
wish to control this storage in detail, e.g. configure a special
storage backend.

The working directory storages are configured using a set of
properties, which is the same as for the other storage types, except
for the prefix.

Note

The path, name, description, enableTrigger and
disableMetadata properties are ignored, they are set by the
server.

For example,

coreServices.sms.jobDirectories.type=CUSTOM
coreServices.sms.jobDirectories.class=your.custom.SMSImpl

[image: metadata-img] The UNICORE metadata service

UNICORE supports metadata management on a per-storage basis. This means, each storage
instance (for example, the user’s home, or a job working directory) has its own
metadata management service instance.

Metadata management is separated into two parts: a front end (which is a web service) and
a back end.

The front end service allows the user to manipulate and query metadata, as well as manually
trigger the metadata extraction process. The back end is the actual implementation of the
metadata management, which is pluggable and can be exchanged by custom implementations.
The default implementation has the following properties:

	Apache Lucene for indexing

	Apache Tika for extracting metadata

	metadata is stored as files directly on the storage resource, in files with a special
.metadata suffix

	the index files are stored on the UNICORE/X server, in a configurable directory

Configuring metadata support

By default, metadata support is enabled on all storages (except job directories).

You can disable it on a per-storage basis, see Configuration of storages for the relevant
config settings.

You can also control which implementation should be used.
This is done in <CONF>/uas.config.

#
Metadata manager settings
#

coreServices.metadata.managerClass=eu.unicore.uas.metadata.LuceneMetadataManager

#
use Tika for extracting metadata
(if you do not want this, remove this property)
#
coreServices.metadata.parserClass=org.apache.tika.parser.AutoDetectParser

#
Lucene index directory:
#
Configure a directory on the UNICORE/X machine where index
files should be placed
#
coreServices.metadata.luceneDirectory=/tmp/data/luceneIndexFiles/

Controlling metadata extraction

If a file named .unicore_metadata_control is found in the
base directory (i.e. where the crawler starts its crawling
process), it is evaluated to decide which files should be
included or excluded in the metadata extraction process.

By default, all files are included in the extraction process,
except those matching a fixed set of patterns (.svn, and
the UNICORE metadata and control files themselves).

The file format is a standard key=value properties file.
Currently, the following keys are understood:

	exclude a comma-separated list of string patterns of
filenames to exclude

	include a comma-separated list of string patterns
of filenames to include

	useDefaultExcludes if set to false, the predefined
exclude list will NOT be used

The include/exclude patterns may include wildcards ? and *.

Examples

To only include pdf and jpg files, you would use

include=*.pdf,*.jpg

To exclude all doc and ppt files,

exclude=*.doc,*.ppt

To include all pdf files except those whose name starts with 2011,

include=*.pdf
exclude=2011*.pdf

[image: move-files-img] Data-triggered processing

UNICORE can be set up to automatically scan storages and trigger processing
steps (e.g. submit batch jobs or run processing tasks) according to
user-defined rules.

By default, data-triggered processing is disabled on all storages.

Explicit control is available via the configuration properties
for storages, as listed in Configuration of storages. Set the enableTrigger property
to true to enable the data-triggered processing for the given storage.

Since shared storages (HOME, ROOT, etc) are owned by the UNICORE server and
used by multiple users, data-triggered processing requires a valid Unix user ID
in order to list files independently of any actual user.
Therefore the triggerUserID property is used to configure which user ID
should be used (as always in UNICORE, this cannot be root, and multiuser
operation requires the TSI!).

For example, you might have a project storage configured like this:

#
Shares
#
coreServices.sms.storage.enabledStorages=PROJECTS

coreServices.sms.storage.PROJECTS.name=projects
coreServices.sms.storage.PROJECTS.description=Shared projects
coreServices.sms.storage.PROJECTS.path=/opt/shared-data
coreServices.sms.storage.PROJECTS.defaultUmask=007
coreServices.sms.storage.PROJECTS.enableTrigger=true
coreServices.sms.storage.PROJECTS.triggerUserID=projects01

Here the scanning settings are only evaluated top-level.

For each included directory, a separate scan is done, controlled by
another .UNICORE_Rules file in that directory. So the directory
structure could look like this:

├── dir1
│ ├── ...
│ └── .UNICORE_Rules
├── dir2
│ ├── ...
│ └── .UNICORE_Rules
├── dir3
│ ├── ...
│ └── .UNICORE_Rules
└── .UNICORE_Rules

The top-level .UNICORE_Rules file must list the included directories.
Processing the included directories is then done using the owner of
that directory.

[image: pdp-img] Authorization back-end (PDP) guide

The authorization process in UNICORE/X requires that nearly all operations
must be authorized prior to execution (exceptions may be safely ignored).

UNICORE allows to choose which authorization back-end is used. The module which
is responsible for this operation is called Policy Decision Point (PDP).
You can choose one among already available PDP modules or even develop your own engine.

Local PDPs use a set of policy files to reach an authorisation decision, remote PDPs query
a remote service.

Local UNICORE PDPs use the XACML language to express the authorization policy. The XACML policy
language is introduced in the Guide to XACML security policies.
You can also review this guide if you want to have a deeper understanding of the authorization
process.

Basic configuration

Note

The full list of options related to PDP is available here.

There are three options which are relevant to all PDPs:

	container.security.accesscontrol (values: true or false) This boolean property can be used
to completely turn off the authorization. This guide makes sense only if this option is set to true.
Except for test scenarios this should never be switched off, otherwise every user can in principle
access all resources on the server.

	container.security.accesscontrol.pdp (value: full class name) This property is used to choose
which PDP module is being used.

	container.security.accesscontrol.pdpConfig (value: file path) This property provides a location
of a configuration file of the selected PDP.

Available PDP modules

XACML 2.0 PDP

The implementation class of this module is: eu.unicore.uas.pdp.local.LocalHerasafPDP so
to enable this module use the following configuration in uas.config:

container.security.accesscontrol.pdpConfig=<CONFIG_DIR>/xacml2.conf
container.security.accesscontrol.pdp=eu.unicore.uas.pdp.local.LocalHerasafPDP

The configuration file content is very simplistic as it is enough to define only few options:

The directory where XACML 2.0 policy files are stored
localpdp.directory=conf/xacml2Policies

Wildcard expression to select actual policy files from the directory defined above
localpdp.filesWildcard=*.xml

Combining algorithm for the policies. You can use the full XACML id or its last part.
localpdp.combiningAlg=first-applicable

The policies from the localpdp.directory are always evaluated in alphabetical order,
so it is good to name files with a number. By default, the first-applicable combining algorithm is
used and UNICORE policy is stored in two files: 01coreServices.xml and 99finalDeny.xml.
The first file contains the default access policy, the latter a single fall through deny rule.
Therefore, you can put your own policies using an additional file in file named
e.g. 50localRules.xml.

The policies are reloaded whenever you change (or touch) the configuration file of this PDP, e.g.
like this:

$ touch conf/xacml2.conf

Remote SAML/XACML 2.0 PDP with Argus PAP

This PDP allows for mixing local policies with policies downloaded from a remote
server using SAML protocol for XACML policy query. This protocol is implemented by
Argus PAP [https://argus-documentation.readthedocs.io/en/stable] server.
Please note that under the name Argus there is a whole portfolio of services, but for purpose
of UNICORE integration Argus PAP is the only one required.

Usage of Argus PAP together with UNICORE policies is useful as Argus PAP allows
for a quite easy editing of authorization policies with its Simplified Policy Language.
It is less powerful then XACML but allows for performing all the typical tasks like
banning selected users or VOs. Also, if Argus is used to provide authorization rules
for other middleware installed at the site (as gLite or ARC), it might be desirable to
have a single place to store site-wide policies.

Unfortunately, as Argus policy can not fully take over
the UNICORE authorization (see the above note for details), the Argus policy must be combined with
the classic UNICORE XACML 2 policy, stored locally.

The implementation class of this module is eu.unicore.uas.pdp.argus.ArgusPDP, so
to enable this module use the following configuration in uas.config:

container.security.accesscontrol.pdpConfig=<CONFIG_DIR>/argus.config
container.security.accesscontrol.pdp=eu.unicore.uas.pdp.argus.ArgusPAP

The PDP configuration is very simple as it is only required to provide the Argus endpoint
and query timeout (in milliseconds).

The directory where XACML 2.0 policy files are stored
(both local and downloaded from Argus PAP)
localpdp.directory=conf/xacml2PoliciesWithArgus

Wildcard expression to select actual policy files from the directory defined above
localpdp.filesWildcard=*.xml

Combining algorithm for the policies. You can use the full XACML id or its last part.
This algorithm will be used to combine the Argus and local policies.
localpdp.combiningAlg=first-applicable

Address of the Argus PAP server. Typically only the hostname needs to be changed,
rarely the port.
argus.pap.serverAddress=https://localhost:8150/pap/services/ProvisioningService

What is the name of a file to which a downloaded Argus policy is saved.
Note that name of this file is very important as it determines policies evaluation order.
Here the Argus policy will be evaluated first.
argus.pap.policysetFilename=00argus.xml

How often (in ms) the Argus PAP should be queried for a new policy
argus.pap.queryInterval=3600000

What is the Argus query timeout in ms.
argus.pap.queryTimeout=15000

If Argus PAP is unavailable for that long (in ms) the PDP will black all users
assuming that the policy is outdated. Use negative value to disable this feature.
argus.pap.deny.timeout=36000000

You can use both http and https addresses. In the latter case server’s certificate is used
to make the connection. Note that all localpdp.* settings are the same as in case
of the default, local XACML 2.0 PDP.

Using the available configuration options, it is possible to merge Argus policies
in many different ways. Here we present a simple pattern, which is good for cases when
Argus is used to ban users (it was also applied to the example above):

	Argus policy should be saved to a file which will be evaluated first, e.g. 00argus.xml.

	Default XACML 2.0 policies of UNICORE local PDP should be added to the directory,
without any changes.

	The policy combining algorithm should be first-applicable.

	Argus PAP policies should include a series of deny statements (see Argus documentation [https://argus-documentation.readthedocs.io/en/stable] for details) and no final permit
(or deny) fall-trough rule.

Then Argus policy will be evaluated first. If any banning rule matches the user then it
will be denied by the Argus policy. Otherwise it will be non-applicable and the local, default
UNICORE policy will be evaluated. Note that if it is problematic for other (non-UNICORE)
services using Argus, to remove the final fall-through permit or deny rule, then you can
add such rule, but with a proper resource statement so it will be applicable only for
non-UNICORE components.

Of course, it is also possible to creatively design other patterns, when for instance Argus policy
is evaluated as a second one.

[image: xacml-img] Guide to XACML security policies

XACML [https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml] authorization policies need not to be modified on a day-to-day basis when
running the UNICORE server. The most common tasks as banning or allowing users
can be performed very easily using UNICORE Attribute Sources like XUUDB or
Unity [https://unity-idm.eu/]. This guide is intended for advanced administrators who want
to change the non-standard authorization process and for developers who want to provide
authorization policies for services they create.

The XACML [https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml] standard is a powerful way to express fine grained access control. The idea is to have
XML policies describing how and by whom actions on resources can be performed. A very readable introduction
into XACML can be found with Sun’s XACML implementation [http://sunxacml.sourceforge.net/guide.html#xacml].

There are several versions of XACML policy language. Currently, UNICORE uses version 2.0.

UNICORE allows to choose one of several authorization back-end implementations
called Policy Decision Points (PDP). The Authorization back-end (PDP) guide shows how
to choose and configure each of the available PDPs.

In UNICORE terms XACML is used as follows. Before each operation (i.e. execution of a web
service call), an XACML request is generated, which currently includes the following attributes:

	XACML attribute name

	XACML category

	XACML type

	Description

	urn:oasis:names:tc:xacml:1.0:
resource:resource-id

	Resource

	AnyURI

	WS service name

	urn:unicore:wsresource

	Resource

	String

	Identifier of the WSRF resource
instance (if any).

	owner

	Resource

	X.500 name

	The name of the VO resource owner.

	voMembership-VONAME

	Resource

	String

	For each VO the accessed resource
is a member, there is such
attribute with the VONAME set to
the VO, and with the value
specifying allowed access type,
using the same action categories
as are used for the actionType
attribute.

	actionType

	Action

	String

	Action type or category.
Currently read for read-only
operation and modify for others.

	urn:oasis:names:tc:xacml:1.0:
action:action-id

	Action

	String

	WS operation name.

	urn:oasis:names:tc:xacml:1.0:
subject:subject-id

	Subject

	X.500 name

	User’s DN.

	role

	Subject

	String

	The user’s role.

	consignor

	Subject

	X.500 name

	Client’s (consignor’s) DN.

	vo

	Subject

	Strings

	Bag with all VOs the user is
member of (if any).

	selectedVo

	Subject

	String

	The effective, selected VO (if
any).

Note that the above list is valid for the default local XACML 2 PDP. For others
the attributes might be different (see the respective documentation).

The request is processed by the server and checked against a (set of) policies. Policies
contain rules that can either deny or permit a request, using a powerful set of functions.

Policy sets and combining of results

Typically, the authorization policy is stored in one file. However as this file can get long
and unmanageable sometimes it is better to split it into several ones. This additionally allows
to easily plug additional policies to the existing authorization process. In UNICORE,
this feature is implemented in the XAML 2.0 PDP.

When policies are split in multiple files each of those files must contain (at least one) a
separate policy. A PDP must somehow combine result of evaluation of multiple policies.
This is done by so-called policy combining algorithm. The following algorithms are available,
the part after last colon describes behaviour of each:

urn:oasis:names:tc:xacml:1.1:policy-combining-algorithm:ordered-permit-overrides
urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:permit-overrides
urn:oasis:names:tc:xacml:1.1:policy-combining-algorithm:ordered-deny-overrides
urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:deny-overrides
urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-applicable
urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:only-one-applicable

Each policy file can contain one or more rules, so it is important to understand how possible
conflicts are resolved. The so-called combining algorithm for the rules in a single policy
file is specified in the top-level Policy element.

The XACML specification defines six algorithms: permit-overrides, deny-overrides,
first-applicable, only-one-applicable, ordered-permit-overrides
and ordered-deny-overrides. For example, to specify that the first matching
rule in the policy file is used to make the decision, the Policy element must contain the
following RuleCombiningAlgId attribute:

<Policy xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 PolicyId="ExamplePolicy"
 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:first-applicable">

The full identifiers of the combining algorithms are as follows:

urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides
urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit-overrides
urn:oasis:names:tc:xacml:1.1:rule-combining-algorithm:ordered-deny-overrides
urn:oasis:names:tc:xacml:1.1:rule-combining-algorithm:ordered-permit-overrides
urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:first-applicable

Role-based access to services

A common use case is to allow/permit access to a certain service based on a user’s role
This can be achieved with the following XACML rule, which describes that a user with role
admin is given access to all services.

<Rule RuleId="Permit:Admin" Effect="Permit">
 <Description> Role "admin" may do anything. </Description>
 <Target />
 <Condition>
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
 <SubjectAttributeDesignator
 DataType="http://www.w3.org/2001/XMLSchema#string" AttributeId="role" />
 </Apply>
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">admin</AttributeValue>
 </Apply>
 </Condition>
</Rule>

If the access should be limited to a certain service, the Target element must contain a
service identifier, as follows. In this example, access to the DataService is granted to those
who have the data-access role.

<Rule RuleId="rule2" Effect="Permit">
 <Description>Allow users with role "data-access" access to the DataService</Description>
 <Target>
 <Resources>
 <Resource>
 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#anyURI">DataService</AttributeValue>
 <ResourceAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
 DataType="http://www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true" />
 </ResourceMatch>
 </Resource>
 </Resources>
 </Target>

 <Condition>
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
 <SubjectAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string" AttributeId="role" />
 </Apply>
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">data-access</AttributeValue>
 </Apply>
 </Condition>

By using the <Action> tag in policies, web service access can be controlled on the method level.
In principle, XACML supports even control based on the content of some XML document, such as
the incoming SOAP request. However, this is not yet used in UNICORE/X.

Limiting access to services to the service instance owner

Most service instances (corresponding e.g. to jobs or files) should only ever
be accessed by their owner. This rule is expressed as follows:

<Rule RuleId="Permit:AnyResource_for_its_owner" Effect="Permit">
 <Description> Access to any resource is granted for its owner </Description>
 <Target />
 <Condition>
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:x500Name-equal">
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:x500Name-one-and-only">
 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
 DataType="urn:oasis:names:tc:xacml:1.0:data-type:x500Name"
 MustBePresent="true" />
 </Apply>
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:x500Name-one-and-only">
 <ResourceAttributeDesignator
 AttributeId="owner" DataType="urn:oasis:names:tc:xacml:1.0:data-type:x500Name"
 MustBePresent="true" />
 </Apply>
 </Apply>
 </Condition>
</Rule>

More details on XACML use in UNICORE/X

To get more detailed information about XACML policies (e.g. to get the list of all
available functions etc) please read the XACML specification [https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml].
To get more information on XACML used in UNICORE/X it is good to set the logging level
of security messages to DEBUG:

logger.sec.name=unicore.security
logger.sec.level=DEBUG

You will be able to read what input is given to the XACML engine and
what is the detailed answer. Alternatively, ask on the
support mailing list.

[image: update-img] UNICORE/X Update

As a first step and precaution, you should make backups of your
existing config files and put them in a safe place.

In the following, LIB refers to the directory containing the jar files for the component, and CONF to the config directory of the existing installation.

	It is assumed that you have unpacked the tar.gz file somewhere, e.g. to /tmp/. In the following, this location will be denoted as “$NEW”:

$ export NEW=/tmp/unicore-servers-9.0.0

	Stop the server. If not yet done, make a backup of the config files.

	Update the jar files:

$ rm -rf LIB/*
$ cp $NEW/lib/*.jar LIB

	Start the server.

	Check the logs for any ERROR or WARN messages and if necessary correct them.

TSI

The UNICORE Target System Interface (TSI) is used by the
UNICORE/X server to perform tasks
on the target resource, such as submitting and monitoring jobs,
handling data, managing directories etc. It is a daemon running on the frontend(s) of the target
resource (e.g. a cluster login node) which provides a remote interface
to the operating system, the batch system and the file system of the
target resource.

The TSI must be started by root on the cluster login node(s), and will
run with elevated privileges. It requires an open port (default: 4433)
where it receives connections from the UNICORE/X server(s). The TSI will
make outgoing connections (callbacks) to the UNICORE/X server(s).
Please set up your firewall(s) accordingly. Operation through an SSH tunnel
is possible as well, see the TSI Manual for details.

[image: UNICORE TSI]

Fig. 9 UNICORE TSI

	[image: user-guide-img] TSI Manual
	TSI Manual with detailed instructions and examples for using the TSI.

	[image: api-img] TSI API
	The API to the TSI as used by UNICORE/X.

	[image: app-package-img] Building the TSI
	Building TSI distribution packages.

[image: user-guide-img] TSI Manual

The TSI performs the work on behalf of UNICORE users and so must be
able to execute processes under different uids and gids. Therefore, in
production it must be run with sufficient privileges to allow this
(during development and testing it can be run as a normal user).

You can configure the TSI and UNICORE/X to communicate via SSL. In
this case, you need a server certificate for the TSI. For details, see
section Enabling SSL for the UNICORE/X - TSI communication.

The TSI is one point where UNICORE’s seamless model meets local
variations and so will usually need to be adapted to the target
system. This is described in section Adapting the TSI to your system.

Note

In production environments, the TSI will run with elevated privileges.
Make sure to read and understand section Securing and hardening the system on security and hardening
the system.

[image: checklist-img] Prerequisites

The TSI requires Python Version 3.6 or later. It works only on
Unix-style operating systems (e.g. Linux or Mac OS/X), Windows is not
directly supported.

The TSI uses the setpriv tool to run as a non-root user (unicore)
with the capability to switch uid/gid to the requested values, in
order to perform tasks on behalf of the requesting user.
If this is not available on the system, the TSI will run
as root (but never perform any actions as root).

Batch system status checks (e.g. via squeue for Slurm) will be
executed under a system account (usually unicore) which is
configured in the UNICORE/X server configuration. Note that this
system account cannot be root, as the TSI will never execute
anything as root.

The system account MUST be able to list batch job status from all
users! If necessary, configure your batch system accordingly. For
details on this procedure we refer to the documentation of your batch
system.

If you want to run user scripts in the proper user slice, you can
enable PAM, which requires an appropriate PAM module file, by
default this is called unicore-tsi.

[image: install-img] Installation

The TSI is available either as a generic distribution (part of the
UNICORE core server [https://sourceforge.net/projects/unicore/files/Servers/Core/] bundle package,
or as a separate tgz archive) or as a
batch system specific package (such as an RPM, deb or tgz for Torque
or Slurm) on the UNICORE repositories [https://sourceforge.net/p/unicore/wiki/Linux_Repositories/] at sourceforge.

Batch system specific distribution

Use the installation tools of your operating system to install the
package. The following table shows the location of the TSI files.

	Name in this manual

	Location

	Description

	CONF

	/etc/unicore/tsi

	Configuration files

	BIN

	/usr/share/unicore/tsi/bin

	Start/stop scripts

	LIB

	/usr/share/unicore/tsi/lib

	Python files

	LOGS

	/var/run/unicore/tsi/logs

	Log files

Generic distribution

The generic TSI distribution contains several TSI variations for many
popular batch systems.

Before being able to use the TSI, you must install one of the TSI variants
and configure it for your local environment:

	Execute the installation script Install.sh and follow the instructions
to copy all required files into a new TSI installation directory.

	Adapt the configuration as described below.

In the following, TSI_INSTALL refers to the directory where you installed the
TSI. This has the following sub-directories:

	Name in this manual

	Location

	Description

	TSI_INSTALL

	
	Base directory chosen during
execution of Install.sh

	CONF

	TSI_INSTALL/conf

	Configuration files

	BIN

	TSI_INSTALL/bin

	Start/stop scripts

	LIB

	TSI_INSTALL/lib

	Python files

	LOGS

	TSI_INSTALL/logs

	Log files

File permissions

The permissions on the TSI files should be set to read only for the
owner. The default installation procedure will initially take care of
this. As the TSI is executed with elevated privileges, you should
never leave any TSI files (or directories) writable after any update.

[image: config-img] Configuring the TSI

The TSI is configured by editing the CONF/tsi.properties and
CONF/startup.properties files. Please review these two files
carefully.

Changes outside the config files should not be necessary, except for
new portings and any local adaptations, as detailed in the next
section. If changes are made, they should be passed on to the
UNICORE developers, so that they can be incorporated into future
releases of the scripts. To do that, send mail to
unicore-support or use the issue
tracker [https://sourceforge.net/p/unicore/issues] at sourceforge.

Verifying

Before starting the TSI, you should make sure that the batch system integration
is working correctly. See the section on Adapting the TSI to your system below!

TSI networking configuration

In tsi.properties, the TSI host interface and port are defined, as well
as the allowed UNICORE/X host(s).

TSI host interface, use "0.0.0.0" to bind to all interfaces
tsi.my_addr=localhost

The port on which the TSI will listen for UNICORE/X requests
tsi.my_port=14433

Comma-separated list of UNICORE/X machine(s) from where
connections are allowed
tsi.unicorex_machine=my-unicorex-a.server.org, my-unicorex-b.server.org

Optionally, define a fixed callback port to UNICORE/X
(If not set, the TSI will use the port requested by UNICORE/X)
tsi.unicorex_port=7654

NOTE: if using SSL (see section Enabling SSL for the UNICORE/X - TSI communication), the tsi.unicorex_machine
is ignored.

You can optionally configure a range of local ports for the TSI to use.
If this is set, the TSI will use free ports from that range only. Per UNICORE/X
connection, two local ports are required, so make sure to not set this range
too small (should be at least 20 ports).

tsi.local_portrange=50000:50100

UNICORE/X configuration

UNICORE/X configuration is described fully in the relevant UNICORE/X manual. Here we just give the most important steps to get the TSI up
and running.

The relevant UNICORE/X config file is usually called tsi.config.

Hostnames and ports

UNICORE/X needs to know the TSI hostname and port:

CLASSICTSI.machine=frontend.mycluster.org
CLASSICTSI.port=4433

SSL support

If you wish to setup SSL for the UNICORE/X-to-TSI communication,
please refer to section Enabling SSL for the UNICORE/X - TSI communication.

ACL support

The TSI (together with UNICORE/X) provides a possibility to manipulate
file Access Control Lists (ACLs). To use ACLs, the appropriate
support must be available from the underlying file system. Currently, only the
so called POSIX ACLs are supported (so called as in fact the
relevant documents POSIX 1003.1e/1003.2c were never finalized), using
the popular setfacl and getfacl commands. Most current file
systems provide support for the POSIX ACLs.

Note

Note, that the current version is relying on extensions of the ACL
commands which are present in the Linux implementation. In case of
other implementation (e.g. BSD) the ACL module should be extended,
otherwise the default ACLs (which are used for directories) support
will not work.

To enable POSIX ACL support you typically must ensure that:

	the required file systems are mounted with ACL support turned on,

	the getfacl and setfacl commands are available on your machine.

Configuration of ACLs is performed in the tsi.properties file. First of all, you can define
a location of setfacl and getfacl programs with tsi.setfacl and tsi.getfacl
properties. By providing absolute paths you can use non-standard locations, typically it is
enough to leave the default, non-absolute values which will use programs as available under the
standard shell search path. Note that if you will comment any of those properties, the POSIX
ACL subsystem will be turned off.

Configuration of ACL support is per directory, using properties of the format:
tsi.acl.PATH, where PATH is an absolute directory path for which the setting is being made.
You can provide as many settings as required, the most specific one will be used.
The valid values are POSIX and NONE respectively for POSIX ACLs and for turning
off the ACL support.

Consider an example:

tsi.acl./=NONE
tsi.acl./home=POSIX
tsi.acl./mnt/apps=POSIX
tsi.acl./mnt/apps/external=NONE

The above configuration turns off ACL for all directories, except for
everything under /home and everything under /mnt/apps with the
exception of /mnt/apps/external.

Warning

Do not use symbolic links or .. or . in properties configuring
directories - use only absolute, normalized paths. Currently spaces in
paths are also unsupported.

Note

The ACL support settings are typically cached on the UNICORE/X side (for a few minutes).
Therefore, after changing the TSI configuration (and after resetting the TSI) you have to
wait a bit until the new configuration is applied also in UNICORE/X.

ACL limitations

There is no ubiquitous standard for file ACLs. POSIX draft ACLs are by far the most popular
however there are several other implementations. Here is a short list that should help to figure out
the situation:

	POSIX ACLs are supported on Linux and BSD systems.

	The following file systems support POSIX ACLs: Lustre, ext{2,3,4}, JFS, ReiserFS and XFS.

	Solaris ACLs are very similar to POSIX ACLs and it should be possible to use TSI to manipulate them
at least partially (remove all ACL operation won’t work for sure and note that usage of
Solaris ACLs was never tested). Full support may be provided on request.

	NFS version 4 provides a completely different, and currently unsupported implementation of ACLs.

	NFS version 3 uses ACLs with the same syntax as Solaris OS.

	There are also other implementations, present on AIX or Mac OS systems or in AFS FS.

Note that in future more ACL types may be supported and will be configured in the same manner, just using
a different property value.

Enabling SSL for the UNICORE/X - TSI communication

SSL support should be enabled for the UNICORE/X - TSI communication to
increase security. This is a MUST when UNICORE/X and TSI run on the
same host, and/or user login is possible on the UNICORE/X host, to
prevent attackers gaining control over the TSI.

You need:

	a private key and certificate for the TSI,

	the CA certificate of the TSI certificate,

	the DN (subject distinguished name) of the UNICORE/X servers that
shall be allowed to connect to the TSI,

	the CA certificate of the UNICORE/X certificate.

The certificate of the TSI signer CA must be added to the UNICORE/X
truststore.

The following configuration options must be set in tsi.properties:

	tsi.keystore

	file containing the private TSI key in PEM format

	tsi.keypass

	password for decrypting the key

	tsi.certificate

	file containing the TSI certificate in PEM format

	tsi.truststore

	file containing the certificate of the accepted CA(s)
in PEM format

	tsi.allowed_dn.NNN

	allowed DNs of UNICORE/X servers in RFC format

SSL is activated if the keystore file is specified in tsi.properties.

The truststore file contains the CA cert(s):

-----BEGIN CERTIFICATE-----

 ... PEM data omitted ...

-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----

 ... PEM data omitted ...

-----END CERTIFICATE-----

The tsi.allowed_dn.NNN properties are used to specify which certificates are allowed,
for example,

tsi.allowed_dn.1=CN=UNICORE/X 1, O=UNICORE, C=EU
tsi.allowed_dn.2=CN=UNICORE/X 2, O=UNICORE, C=EU

Attention

If you do not specify any access control entries, all
certificates issued by trusted CAs are allowed to
connect to the TSI. Be very careful to prevent
illicit access to the TSI!

When UNICORE/X connects, its certificate is checked:

	the UNICORE/X cert has to be valid (i.e. issued by a trusted CA and
not expired),

	the subject of the UNICORE/X cert is checked against the configured ACL
(list of allowed DNs).

On the UNICORE/X side, set the following property (usually in
the xnjs.properties file):

enable SSL using the UNICORE/X key and trusted certificates
CLASSICTSI.ssl.disable=false

[image: settings-img] Adapting the TSI to your system

Environment and paths

The environment and path settings for the main TSI process and all
its child processes (TSI workers) are controlled in the startup.properties
file.

Important

Please revise the path and environment settings in the main
startup.properties config file.

These should include the path to all executables required by the TSI,
notably the batch system commands, and if applicable, the ACL
commands.

As the TSI process runs as root, and switches to the required
user/group IDs before each request, setting up the required
environment per user has to be done carefully. Per-user settings are
usually done on the UNICORE/X level using IDB templates, please
refer to the UNICORE/X documentation.

Assigning groups to the current user

The current user will all her groups assigned. On some systems the default
Python function used for resolving a user’s groups does not see all
the groups. If this is the case, set in tsi.properties:

tsi.use_id_to_resolve_gids=true

This will use a different implementation via the system command
id -G <username>.

Batch system integration: BSS.py

The file BSS.py [https://github.com/UNICORE-EU/tsi/blob/master/lib/BSS.py]
contains the functions specific to the used batch system,
specifically it prepares the job script, deals with job status
reporting and job control.

Even if you run a well-supported batch system such as Torque or Slurm,
you should make sure that the job status reporting works properly.

Also, any site-specific resource settings (e.g. settings related to
GPUs, network topology etc) are dealt within this file.

Reporting free disk space

UNICORE will often invoke the df command which is implemented in the
IO.py [https://github.com/UNICORE-EU/tsi/blob/master/lib/IO.py] file in order
to get information about free disk space. On some
distributed file systems, executing this command can take quite some
time, and it may be advisable to modify the df function to
optimize this behaviour.

Reporting computing time budget

If supported by your site installation, users might have a computing time
budget allocated to them. The BSS.py [https://github.com/UNICORE-EU/tsi/blob/master/lib/BSS.py] module contains a
function get_budget that is used to retrieve this budget as a number e.g.
representing core-hours. By default, this function returns -1 to indicate
that computing time is not budgeted.

Filtering cluster working nodes

Starting from version 6.5.1 the TSI can filter nodes based on the properties
defined for nodes in BSS configuration. It can limit working nodes only to
those having shared file system.
It can be defined in the tsi.properties file by setting the property tsi.nodes_filter.

Attention

Note that this feature is not working for all batch systems. Currently, it is
supported in Torque and SLURM.

Resource reservation

The reservation module Reservation.py [https://github.com/UNICORE-EU/tsi/blob/master/lib/Reservation.py] is
responsible for interacting with the reservation system of your batch system.

Attention

Note that this feature is not available for all batch systems. Currently, it is
included in Torque and SLURM.

[image: connections-img] Execution model

The main TSI process will respond to UNICORE/X requests and start
up TSI workers to do the work for the UNICORE/X server.
The TSI workers connect back to the UNICORE/X server.

It is possible to use the same TSI from multiple UNICORE/X servers.

Since the main TSI process runs with elevated privileges, it must
authenticate the source of commands as legitimate. To do this, the TSI
is initialised with the address(es) of the machine(s) that runs the
UNICORE/X. The TSI will only accept requests from the defined
UNICORE/X machine(s). The callback port can be pre-defined in
tsi.properties as well. If it is undefined, the TSI will attempt to
read it from the UNICORE/X connect message.

Note that it is possible to enable SSL on the TSI listen port, see below.
In SSL mode, there is no check of the UNICORE/X address.

If the UNICORE/X process shuts down, any TSI workers that are connected to
UNICORE/X will also shut down. However, the main TSI process will continue
executing and will spawn new TSI workers processes when the UNICORE/X server
is restarted. Therefore, it is not necessary to restart the TSI daemon
when restarting UNICORE/X.

If a TSI worker stops execution, UNICORE/X will request a new one to replace it.

If the main TSI process stops execution, then all TSI processes will also be killed.
The TSI must then be restarted, this does not happen automatically.

[image: authentication-img] PAM, systemd and user slices

By default, user tasks (such as user scripts on the TSI node) will run in the same
slice as the TSI itself.

You can enable PAM, which will open a user session before running the user’s tasks,
so the tasks will be run in the correct user slice, and thus the system’s resource
management will properly apply also to tasks started via UNICORE.

To do this, set in tsi.properties

tsi.open_user_sessions=1

By default, a PAM module unicore-tsi is expected (/etc/pam.d/unicore-tsi).
For example, this could contain:

#%PAM-1.0
auth sufficient pam_rootok.so
session required pam_limits.so
session required pam_unix.so
session required pam_systemd.so

[image: folders-img] Directories used by the TSI

The TSI must have access to the filespace directory specified in the
UNICORE/X configuration (usually the property XNJS.filespace in
xnjs.properties) to hold job directories. These directories are
written with the TSI’s uid set to the Unix user for which the work is
being performed. If you use a shared directory for all users,
this directory must be world writable. The required Unix access mode is 1777.

[image: start-img] Running the TSI

For the Linux packages, the TSI is pre-configured for systemd, and
if you want to run it as a a system service, you can use systemctl:

$ sudo systemctl add-wants multi-user.target unicore-tsi-variant

(where variant stands for the concrete TSI implementation, such as
nobatch or slurm)

Starting

If installed from an Linux package, the TSI can be started via systemd:

$ sudo systemctl start unicore-tsi-variant

The TSI can also be started using the script BIN/start.sh.

Stopping the TSI

If installed from an Linux package, the TSI can be stopped via systemd:

$ sudo systemctl stop unicore-tsi-variant

The TSI can also be stopped using the script BIN/stop.sh
(cf. section Scripts). This will stop the main TSI process and the tree
of all spawned processes including the TSI workers.

TSI worker processes (but not the main process) will stop executing when
the UNICORE/X server it connects to stops executing.

It is possible to stop a TSI worker process, but this could result in
the failure of a job (the UNICORE/X server will recover and create
new TSI processes).

TSI logging

By default, the TSI logs to the system journal (syslog), and you can read
the logs via journalctl, for example,

$ sudo journalctl -u unicore-tsi-variant

To print logging output to stdout instead, set

tsi.use_syslog=false``

in the CONF/tsi.properties file.

Since stdout is redirected to a file (see the STARTLOG definition in CONF/startup.properties)
the logging output will be in that file.

For more verbose logging, set

tsi.debug=true

in CONF/tsi.properties.

[image: integration-img] Porting the TSI to other batch systems

Most variations are found in the batch subsystem commands, porting
to a new BSS usually requires changes to the following files:

	BSS.py [https://github.com/UNICORE-EU/tsi/blob/master/lib/BSS.py]

	Reservation.py [https://github.com/UNICORE-EU/tsi/blob/master/lib/Reservation.py]
(reservation functions if applicable)

It is recommended to start from a up-to-date and well-documented TSI, e.g.
the Torque or Slurm variation. If you have further questions regarding porting
to a new batch system, please use the unicore-support or unicore-devel mailing lists.

[image: security-img] Securing and hardening the system

In a normal multi-user production setting, the TSI runs with elevated
privileges, and thus it is critical to prevent illicit access to the
TSI, which would allow accessing or destroying arbitrary user data, as
well as impersonating users and generally wreaking havoc.

Once the connection to the UNICORE/X is established, the TSI is
controlled via a simple text-based API. An attacker allowed to connect
to the TSI can very easily execute commands as any valid (non-root)
user.

In non-SSL mode, the TSI checks the IP address of the connecting
process, and compare it with the expected one which is configured in the
tsi.properties file.

In SSL mode, the TSI checks the certificate of the connecting process, by
validating it against its truststore which is configured in the tsi.properties
file.

We recommed the following measures to make operating the TSI secure:

	Prevent all access to the TSI’s config and executable files. This is usually
done by setting appropriate file permissions, and usually already taken care
of during installation (please see the section File permissions).

	Make sure only UNICORE/X can connect to the TSI. This is most reliably done by
configuring SSL for the UNICORE/X to TSI communication (please see the section
Enabling SSL for the UNICORE/X - TSI communication).

	If SSL cannot be used, the UNICORE/X should run on a separate machine.

	On the UNICORE/X machine, user login should be impossible. This will
prevent bypassing the IP check (in non-SSL mode) and/or accessing
the UNICORE/X private key (in SSL mode).

	If you for some reason HAVE to run UNICORE/X and TSI on the same
machine, and user login or execution of user commands is possible
on that machine, you MUST use SSL, and take special care to protect
the UNICORE/X config files and keystore using appropriate file
permissions. Not using SSL in this situation is a serious risk! An
attacker connecting to the TSI can impersonate any user and access
any user’s data (except for the root user).

	An additional safeguard is to establish monitoring for UNICORE/X, and
kill the TSI in case the UNICORE/X process terminates.

Important

Summarizing, it is critical to protect config files and executable
files. We strongly recommend to configure SSL. Using SSL is a MUST
in deployments where users can login to the UNICORE/X machine.

[image: api-img] TSI API

This document describes the API to the TSI as used by
UNICORE/X (more concretely, the XNJS subsystem of UNICORE/X).
The parts of the TSI that interact with the target system have been isolated
and are documented here with their function calls.

The functions are implemented in the TSI as calls to Python methods.
Input data from the UNICORE/X server is passed as arguments to the
method. Output is returned to the UNICORE/X server by calling some
global methods documented below or by directly accessing the TSI’s
command and data channels. TSIs are shipped with default
implementations of all the functions and can be tailored by changing
the supplied code or by implementing new versions of the functions
that need to change for the system.

Note that this document is not a complete definition of the API, it is
a general overview. The full API specification can be derived by
reading the TSI code supplied with a UNICORE release.

Initialisation

For connecting to the UNICORE/X server, a callback mechanism is
used. First, the UNICORE/X server will contact the main TSI process to
request the creation of a new TSI worker process. The main TSI will
call back the UNICORE/X server and create the necessary
communications. It will receive any initialisation information send by
the UNICORE/X server. After successful creation of the TSI worker
process, the UNICORE/X server can communicate with the worker and ask
it to execute commands. The UNICORE/X-to-TSI connection uses two
sockets, a data and a command socket.

After initialisation is complete, the process() function (in the
TSI.py [https://github.com/UNICORE-EU/tsi/blob/master/lib/TSI.py] module)
is entered, which reads messages from the UNICORE/X server and dispatches processing
to the various TSI functions.

Messages to the UNICORE/X server

The TSI provides methods to pass messages to the UNICORE/X server. In
particular the UNICORE/X server expects every method to reply
at the end of its execution. The messaging methods
are implemented in Connector.py [https://github.com/UNICORE-EU/tsi/blob/master/lib/Connector.py]:

	write_message(string) Sends a message to the UNICORE/X server

	ok(string) Sends a message to the UNICORE/X server to say that
execution of the command was successful.
This message always starts with a line TSI_OK

	failed(string) Sends a message to the UNICORE/X server to say
that execution of the command failed. The string is sent to the
UNICORE/X server as part of the failure message.
This message always starts with a line TSI_FAILED

Messages have to end with a special tag ENDOFMESSAGE, since the
command sockets are left open for receiving the next command.

User identity and environment setting

In production mode the TSI will be started as a privileged user
capable of changing the TSI worker process’ uid and gid to the values
requested by the UNICORE/X server. This change is made before the TSI
executes any external actions. The idenity is passed as a line in the
message string sent by the UNICORE/X server, which starts with
#TSI_IDENTITY.

The TSI performs three types of work: the execution and monitoring of
jobs prepared by the user, transfer and manipulation of files on
storages and the management of Uspaces (job working directory). Only
the first type of work, execution of jobs, needs a complete user
environment. The other two types of TSI work use a restricted set of
standard commands (mkdir, cp, rm, etc) and should not require access to
specific environments set up by users. Furthermore, job execution is
not done directly by the TSI but is passed on to the local Batch
Subsystem which ensures that a full user environment is set before a
job is executed. Therefore, the TSI only needs to set a limited user
environment for any child processes that it creates. The TSI sets the
following environment in any child process:

	$USER This is set to the user name supplied by the UNICORE/X
server.

	$LOGNAME This is set to the user name supplied by the UNICORE/X
server.

	$HOME This is set to the home directory of the user as given by
the target system’s password file.

	$PATH This is inherited from the parent TSI process (see the
tsi.properties file).

Localisations of the TSI will also need to set any other environment
necessary to access the BSS.

For testing, the TSI may be started as a non-privileged user, when no
changing of uid and gid is possible.

Method dispatch

To determine which method to call, the TSI checks the message from the
UNICORE/X server for the occurrence of special tags (followed by a new
line). For example, the occurrence of a #TSI_SUBMIT tag will lead to
execution of the BSS.submit() function. Before entering any method,
user/group ID switching is performed, as explained in the previous
section.

Job execution and job control functions

Job submission (#TSI_SUBMIT)

The submit(string) function submits a user script to the BSS.

Input

As input, the script to be executed is expected. The string from the
UNICORE/X server is processed to replace all instances of $USER by the
user’s name and $HOME by the user’s home directory. No further
processing needs to be done on the script.

The UNICORE/X server will embed information in the script that the TSI
may need to use. This information will be embedded as comments so no
further processing is needed. Each piece of information will be on a
separate line with the format:

#TSI_<name> <value>

If the value is the string NONE, then the particular information
should not be supplied to the BSS during submission. The information
is:

	#TSI_JOBNAME This is the name that should be given to the job. If
this is NONE (or is determined to be invalid), the TSI will use a
default jobname.

	#TSI_PROJECT The user’s project (for accounting).

	#TSI_STDOUT# and #TSI_STDERR The names for standard output and
error files.

	#TSI_OUTCOME_DIR The directory where to write the stdout and
stderr files to. In general this is the same as #TSI_USPACE_DIR#.

	#TSI_USPACE_DIR The initial working directory of the script
(i.e. the Uspace directory).

	#TSI_TIME The run time (wall clock) limit requested by this job
in seconds.

	#TSI_MEMORY# The memory requirement of the job. The UNICORE/X
server supplies this as a megabytes per node value.

	#TSI_TOTAL_PROCESSORS The number of processors required by the
job.

	#TSI_PROCESSORS The number of processors per node required by the
job.

	#TSI_NODES The number of nodes required by this job.

	#TSI_QUEUE The BSS queue to which this job should be submitted.

	#TSI_UMASK The default umask for the job.

	#TSI_EMAIL The email address to which the BSS should send any
status change emails.

	#TSI_RESERVATION_REFERENCE If the job should be run in a
reservation, this parameter contains the reservation ID.

	#TSI_ARRAY If multiple instances of the same job are to be submitted, this
contains the list of array IDs, e.g. “1-100”, or “2,4,6”.

	#TSI_ARRAY_LIMIT If multiple instances of the same job are to be submitted,
this optionally limits the number of concurrently running instances.
E.g. 5 will limit the number of instances to 5.

	#TSI_BSS_NODES_FILTER <filterstring> Administrators can define a
string in the IDB which is to be used as nodes filter, if the BSS
supports this.

In addition to these, additional site-specific resources (e.g. GPUs)
can be defined on the UNICORE/X server, which are passed via
#TSI_SSR_<resource_name> <resource_value> lines.

Output

	Normal: the output is the BSS identifier of the job unless the execution was interactive.
In this case the execution is complete when the TSI returns from this call and the output
is that from ok().

	Error: failed() called with the reason for failure

Raw job submission

If the instruction #TSI_JOB_MODE raw is encountered in the submit script, the
TSI will ignore any further instruction relevant for batch system submission. Instead
a second instruction #TSI_JOB_FILE <filename> determines a file that will be read and
used as BSS specific information.

Resource allocation job

If the instruction #TSI_JOB_MODE allocate is encountered in the submit script,
the TSI will use the requested resources as in a normal batch job submission.
The TSI will create a script that only allocates resources from the BSS, but
does not launch anything. The allocation identifier will be written to a file
BSS_ALLOCATION_ID in the working directory.

Once this job has finished, the allocation ID can be read from the BSS_ALLOCATION_ID,
and can be used in subsequent jobs.

Script execution (#TSI_EXECUTESCRIPT)

The function TSI.execute_script() executes the script directly from
the TSI process, without submitting the script to the batch
subsystem. This function is used by the UNICORE/X server to create and
manipulate the Uspace, to perform file management functions, etc. The
UNICORE/X server also uses this to execute user defined code, for
example when user precommands or postcommands are defined in execution
environments.

Input

The script to be executed. The string from the UNICORE/X server is
processed to replace all instances of $USER by the user’s name and
$HOME by the user’s home directory. No further processing needs to
be done on the script. If a #TSI_DISCARD_OUTPUT string is present,
no output will be gathered.

Output

	Normal: The script has been executed. Concatenated stderr and
stdout from the execution of the script is sent to the UNICORE/X
server following the ok() call.

	Error: failed() called with the reason for failure.

Job control

	#TSI_ABORTJOB The BSS.abort_job() function sends a command to the
BSS to abort the named BSS job. Any stdout and stderr produced by the
job before the abort takes effect must be saved.

	#TSI_CANCELJOB The BSS.cancel_job() function sends a command to
the BSS to cancel the named BSS job. Cancelling means both
finishing execution on the BSS (as for abort) and removing any
stdout and stderr.

	#TSI_HOLDJOB The BSS.hold_job() function sends a command to the
BSS to hold execution of the named BSS job. Holding means
suspending execution of a job that has started or not starting
execution of a queued job. Note that suspending execution can
result in the resources allocated to the job being held by the job
even though it is not executing and so some sites may not allow
this. This is dealt with by the relaxed post condition below. Some
sites can hold a job’s execution and release the resources held by
the job (leaving the job on the BSS so that it can resume
execution). This is called freezing. The UNICORE/X server can send
a request for a freeze (#TSI_FREEZE) which the TSI may execute, if
there is no freeze command initialised the TSI may execute a hold
in its place An acceptable implementation is for hold_job to return
without executing a command.

	#TSI_RESUMEJOB The BSS.resume_job() function sends a command to
the BSS to resume execution of the named BSS job. Not that
suspending execution can result in the resources allocated to the
job being held by the job even though it is not executing and so
some sites may not allow this. An acceptable implementation is for
resume_job to return without executing a command (if hold_job did
the same).

Input

All job control functions require the BSS job ID as parameter in the form
#TSI_BSSID <identifier>.

Output

	Normal: the job control function was invoked. No extra output.

	Error: failed() called with the reason for failure.

Detailed job info (#TSI_GETJOBDETAILS)

#TSI_GETJOBDETAILS the BSS.get_job_details() function sends a
command to the BSS requesting detailed information about the job.
The format and content is BSS specific, and is sent to UNICORE/X
without any further processing.

Input

All job control functions require the BSS job ID as parameter in the form
#TSI_BSSID <identifier>.

Output

	Normal: detailed job information sent via ok().

	Error: failed() called with the reason for failure.

Status listing (#TSI_QSTAT)

This BSS.get_status_listing() function returns the status of all the
jobs on the BSS that have been submitted through any TSI providing
access to the BSS.

This method is called with the TSI’s identity set to the special user
ID configured in the UNICORE/X server (CLASSICTSI.priveduser
property). This is because the UNICORE/X server expects the returned
listing to contain every UNICORE job from every UNICORE user but some
BSS only allow a view of the status of all jobs to privileged users.

Input

None.

Output

	Normal: The first line is QSTAT. There follows an arbitrary
number of lines, each line containing the status of a job on the
BSS with the following format: id status <queuename>, where id
is the BSS identifier of the job and status is one of: QUEUED,
RUNNING, SUSPENDED or COMPLETED. Optionally, the queue name can be
listed as well. The output must include all jobs still on the BSS
that were submitted by a TSI executing on the target system
(including all those submitted by TSIs other than the one executing
this command). The output may include lines for jobs on the BSS
submitted by other means.

	Error: failed() called with the reason for failure.

Getting the user’s remaining compute budget (#TSI_GET_COMPUTE_BUDGET)

This BSS.get_budget() function returns the remaining compute budget
for the user (in core hours) or -1 if not known or not applicable.

Input

None.

Output

	Normal: Budget info (see format below) is sent via ok().

	Error: failed() called with the reason for failure.

Format

The output is a multiline string which each line of the form

<PROJECT> <ABSOLUTE_BUDGET> <PERCENTAGE> <UNITS>

where,

	PROJECT

	the project / budget account name

	ABSOLUTE_BUDGET

	the absolute value (integer) of compute time remaining

	PERCENTAGE

	the relative amount (integer, 0-100) of compute time remaining

	UNITS

	the units used (should be one of: core-h, node-h, cpu-h)

I/O functions

Reading a file (#TSI_GETFILECHUNK)

The IO.get_file_chunk() function is called by the UNICORE/X server
to fetch the contents of a file.

Input

	#TSI_FILE <file name> The full path name of the file to be sent to the UNICORE/X server

	#TSI_START <start byte> Where to start reading the file

	#TSI_LENGTH <chunk length> How many bytes to return

The file name is modified by the TSI to substitute all occurrences of
the string $USER by the name of the user and all occurrences of the
string $HOME by the home directory of the user.

Output

	Normal: The UNICORE/X server has a copy of the request part of the file
(sent via the data socket).

	Error: failed() is called with the reason for failure.

Writing files (#TSI_PUTFILECHUNK)

The put_file_chunk() function is called by the UNICORE/X server to
write the contents of one file to a directory accessible by the TSI.

Input

	The #TSI_FILESACTION parameter contains the action to take if the
file exists (or does not):

	0 = don’t care,

	1 = only write if the file does not exist,

	2 = only write if the file exists,

	3 = append to file.

	The #TSI_FILE parameter contains the filname and permissions.

	The #TSI_LENGTH parameter contains the number of bytes to read from
the data channel and write to disk.

The TSI replies with TSI_OK, and the data to write is then read from
the data channel.

Output

	Normal: The TSI has written the file data.

	Error: failed() called with the reason for failure.

File ACL operations (#TSI_FILE_ACL)

The process_acl function allows to set or get the access control list on a given file or
directory. Please refer to the file ACL.py [https://github.com/UNICORE-EU/tsi/blob/master/lib/ACL.py] to learn about this part of the
API.

Listing directories and getting file information (#TSI_LS)

This function allows to list directories or get information about a
single file.

Input

	The #TSI_FILE parameter contains the file/directory name.

	The #TSI_LS_MODE parameter contains the kind of listing:

	A = info on a single file,

	R = recursive directory listing,

	N = normal directory listing.

Output

	Normal: The TSI writes the listing to the command socket, see the
IO.py [https://github.com/UNICORE-EU/tsi/blob/master/lib/IO.py] file for a
detailed description of the format

	Error: TSI replies with TSI_FAILED and the reason for failure.

Getting free disk space (#TSI_DF)

This function allows to get the free disk space for a given path.

Input

The #TSI_FILE parameter contains the file/directory name.

Output

	Normal: The TSI writes the disk space info to the command socket, see
the IO.py [https://github.com/UNICORE-EU/tsi/blob/master/lib/IO.py] file for a detailed
description of the format.

	Error: TSI replies with TSI_FAILED and the reason for failure.

Resource reservation functions

The TSI offers functionality to create and manage reservations. These
are implemented in the file Reservation.py [https://github.com/UNICORE-EU/tsi/blob/master/lib/Reservation.py],
different versions for different scheduling systems exist.

Creating a reservation (#TSI_MAKE_RESERVATION)

This is used to create a reservation.

Input

	#TSI_RESERVATION_OWNER <xlogin>: The user ID (xlogin) of the reservation owner,

	#TSI_STARTTIME <time>: The requested start time in ISO8601 format
(yyyy-MM-ddT HH:mm:ssZ),

	The requested resources are passed in in the same way as for job submission.

Output

	Normal: The command replies with a single reservation ID string.

	Error: failed() called with the reason for failure.

Querying a reservation (#TSI_QUERY_RESERVATION)

This is used to query the status of a reservation.

Input

	#TSI_RESERVATION_REFERENCE <reservation_ID>: The reservation reference
that shall be queried.

Output

	Normal: The command produces two lines. The first line contains the
status (UNKNOWN, INVALID, WAITING, READY, ACTIVE, FINISHED or OTHER) and
an optional start time (ISO 8601). The second line contains a human-readable
description.

	Error: failed() called with the reason for failure.

Cancelling a reservation (#TSI_CANCEL_RESERVATION)

This is used to cancel a reservation.

Input

	#TSI_RESERVATION_REFERENCE <reservation_ID>: The reservation reference
that is to be cancelled.

Output

	Normal: ok() called with no special output.

	Error: failed() called with the reason for failure.

Miscellaneous functions

Getting TSI version information (#TSI_PING)

The TSI.ping() function returns the TSI version.

Input

None.

Output

	TSI version string as defined in the TSI.py file

Getting user information (#TSI_GET_USER_INFO)

The TSI.get_user_info() function returns the user’s HOME directory,
and a list of public keys, which is read froma list of configurable files in
the user’s HOME directory (defaulting to .ssh/accepted_keys).

Input

None.

Output

	User info (format below) is sent via +message()+

Format

The output is a multiline string

home: <user_home_directory>
Accepted key 1: <public_key_1>
Accepted key 2: <public_key_2>
 ...
status: <status message>

[image: app-package-img] Building the TSI

Clone the git repository:

$ git clone https://github.com/UNICORE-EU/tsi
$ cd tsi

Use the supplied Makefile to run tests and/or build packages for
the various supported batch systems.

You will need Java, Maven and Ant to build RPM/DEB packages.

Packaging [image: app-package]

Run

$ make <bss>-<type>

where <bss> is one of: nobatch, slurm, torque, lsf
and <type> is one of: tgz, deb, rpm.

Generic binary TGZ

To create a generic binary archive that can be used to install
any version of the TSI via the Install.sh script, run

$ make clean tgz

XUUDB

The UNICORE XUUDB is a service acting as an attribute source as part
of a UNICORE installation. It is an optional service, that is best
suited as a per-site service, providing attributes for multiple
UNICORE/X-like services at a site.

The XUUDB maps a UNICORE user identity (which is formally an X.500
distinguished name (DN)) to a set of attributes. The attributes are
typically used to provide local account details (uid, gid(s)) and
commonly also to provide authorization information, i.e. the
user’s role.

[image: UNICORE XUUDB]

Fig. 10 UNICORE XUUDB

	[image: user-guide-img] XUUDB Manual
	User Manual with detailed instructions and examples for using the XUUDB.

[image: user-guide-img] XUUDB Manual

The XUUDB server is an Attribute Source implementation which can be used by
UNICORE servers. It is used to map a UNICORE identity (an X500 distinguished name)
to authorisation and incarnation attributes. The XUUDB is also capable of performing
dynamic mappings of incarnation attributes, using a rule engine.

For more information about UNICORE visit https://www.unicore.eu.

[image: overview-img] Overview

The UNICORE XUUDB is used to map a UNICORE user identity (an X.500
distinguished name (DN)) to a set of attributes. The attributes are
typically used to provide local account details (uid, gid(s)) and
sometimes also to provide authorization information, i.e. the user’s role.

The UNICORE XUUDB is best suited as a site-service. Theoretically, it can be used for multiple
sites, however as it offers limited authorization capabilities and doesn’t allow
for grouping users, it is better to use the more flexible Unity server [https://unity-idm.eu/]
in such a case. In case of the simple one host-service XUUDB sometimes can be replaced by a
simple file storing the mappings. Please refer to the UNICORE/X documentation for more information.

The XUUDB offers two web services, one for querying, and one for
administration of the users’ database. There are several clients which can use the XUUDB server:

	Admin client (see The admin client) can be used to control the XUUDB database contents.

	UNICORE servers include the XUUDB client code (it is named XUUDB Attribute Information Point) and
can consume and process the XUUDB information.

Both admin and client access to the XUUDB can be protected by a client-authenticated SSL.

The XUUDB can map users using two different mechanisms:

	classic or static mechanism, where administrator enters mappings
for each DN manually,

	dynamic mechanism, where administrator only define rules stating what attributes
should be assigned to UNICORE users fulfilling rule’s condition.

The classic mapping

The classic or static mechanism when UNICORE is used as a gateway to HPC
site, with a well defined set of users. It is also useful in federated
scenarios when a dedicated, external infrastructure is build to
maintain a global list of users.

Using it it is possible to set a list of UNIX logins (aka XLogins or uids), a list of
UNIX groups (aka projects or gids) and the role attribute used for authorization.
The first uid and the first gid is assumed to be the default one but Grid users are
allowed to choose any of the available.

In case of the default authorization policy the user role is required to get a normal access
to the site, the admin role grants super-user privileges, and the banned role bans the user.

The XUUDB stores and compares only distinguished names (DNs), not full certificates.

Multiple UNICORE sites can share the XUUDB, even if the attributes are
different per UNICORE site. Sites are grouped by the so-called GCID
(grid component ID).

The dynamic mapping

The dynamic mechanism is used to map users who were already
authorized, therefore it doesn’t make sense (and is not possible) to
assign the authorization attributes as role. The dynamic mechanism
is useful in deployments where a site doesn’t know the precise list of
its users (which are maintained externally), or simply doesn’t want to
define local accounts for each UNICORE user. In other words, the site
relies on a trusted 3rd party to maintain a list of genuine and
authorized users, and automatically assigns a local account to each
user.

As it will be shown later on dynamic mappings can be also used in
other scenarios, also being complementary to static mappings.

Dynamic mappings configuration is described in the section Dynamic mappings configuration.

Important

IMPORTANT NOTE ON PATHS

XUUDB is distributed either as an platform independent and portable
bundle (as part of the UNICORE quickstart package) or as an
installable, platform dependent package such as RPM.

Depending on the installation package used paths are different. If
installing using distribution-specific package the following path prefixes
are used:

CONF=/etc/unicore/xuudb
BIN=/usr/sbin
ADMIN=/usr/sbin/unicore-xuudb-admin
LOG=/var/log/unicore/xuudb

If installing using portable bundle all XUUDB files are installed
under a single directory. Path prefixes used then are as follows,
where INST is a directory where the XUUDB was installed:

CONF=INST/conf
BIN=INST/bin
ADMIN=BIN/admin.sh
LOG=INST/log

The above variables (CONF, BIN, ADMIN and LOG) are used throughout the rest of this
manual.

[image: install-img] Installation

The UNICORE XUUDB is distributed in the following formats:

	As a part of a platform independent installation bundle called
UNICORE core server bundle [https://sourceforge.net/projects/unicore/files/Servers/Core].

	As a platform-specific binary package [https://sourceforge.net/p/unicore/wiki/Linux_Repositories/].
available for RedHat (Centos) and Debian platforms. Those
packages are not tested on all possible platforms, but should work
without any problems with other versions of similar distributions.

In both cases an installation of XUUDB installs both XUUDB Server and XUUDB admin client.

After installing the server you will have to configure it. This is described in the section
The XUUDB server.

Installation from Core Server Bundle

Download the core server bundle from the UNICORE project website at
https://sourceforge.net/projects/unicore/files/Servers/Core.

Installation from RPM or DEB packages

An up-to-date list of the available repositories is given on the following page
https://sourceforge.net/p/unicore/wiki/Linux_Repositories/.

The preferred way is to use Yum or APT to install (and subsequently update) XUUDB.

After the repository is configured, the following command will install the XUUDB:

$ yum install unicore-xuudb

or in case of Debian systems:

$ apt-get install unicore-xuudb

The XUUDB server

Security

Usually, client-authenticated SSL is used to protect the XUUDB. For
this you will need certificates for the XUUDB server and all Grid
components that want to talk to the XUUDB. In general, the UNICORE
servers (like UNICORE/X) and the XUUDB-admin client need to
connect to the XUUDB-server. To make SSL connections possible, you have
to put the following certificates as trusted certs into the XUUDB’s
server truststore:

	CA certificate(s) of the UNICORE/X server(s) that query the XUUDB

	CA certificate(s) of the XUUDB-admin user certificate(s)

and XUUDB’s CA certificate in the truststores of its clients.

XUUDB server may be run using a plain HTTP port. Then there is no
access control at all, so this mode is useful only in environments
where XUUDB port is fully protected otherwise against unauthorised
access.

Administrative access

The XUUDB provides two kinds of web service interfaces, one for
querying the XUUDB (i.e. mapping UNICORE users to local UNIX users),
and a second one for administration of the XUUDB (i.e. adding and
editing entries). All access to the XUUDB (including the
administration utility!) is through these web services. To prevent
arbitrary users from modifying the XUUDB, the administrative
interface has to be protected.

To protect the administrative interface, an ACL file is used, which is
a plain text file containing the distinguished names of the
administrators. At least, it has to contain the DN of the certificate
used by the administration utility.

As the static XUUDB data is rather sensitive (at least if privacy of the users
is a concern) and dynamic mappings often require some local modifications (e.g.
assigning an account from a pool) it is often desirable to protect also the
query operations. The XUUDB server offers such an option
(see Base server settings).

The ACL file can be changed at runtime to easily add or remove administrators.

To change the location of the ACL file, edit the server
configuration and set a configuration parameter (see Base server settings).

The ACL entries are expected in the RFC 2253 format. To get the name
of a certificate in the correct format using openssl, you can use the
following OpenSSL command:

$ openssl x509 -in demouser.pem -noout -subject -nameopt RFC2253

Configuration

By default, the configuration is defined in the file
CONF/xuudb_server.conf. To use a different configuration file, edit the start script,
or use --start <config_file> as command line arguments when starting.

The server’s configuration file allows for setting the general XUUDB settings,
database backend settings, advanced HTTP server settings and finally
(for secure HTTPS URLs) the server’s truststore and credential. The available
properties are described in the following sections.

For production deployments you should review the listen
address and setup correctly truststore and credential.
Defaults for the embedded database configuration and HTTP server settings are usually fine.
In case if you plan to use dynamic mappings, also the dynamic mapping rules need to be provided.

Base server settings

	Property name

	Type

	Default value / mandatory

	Description

	xuudb.aclFile

	filesystem path

	
mandatory

	File with DNs of servers/clients authorised to access protected XUUDB services.

	xuudb.address

	string

	http://localhost:34463

	HTTPS or HTTP URL where the server should listen.

	xuudb.db..*

	string can have subkeys

	
	Properties with this prefix are used to configure database backend, used by XUUDB. See separate documentation for details.

	xuudb.dynamicAttributesConfig

	filesystem path

	conf/dynamicAttributesCfg.xml

	File with configuration of the dynamic part of the XUUDB.

	xuudb.protectAll

	[true, false]

	false

	If true then access to both query and modify operations are protected by ACL. If false then only modification operations are protected.

Database settings

The XUUDB can be configured to use different database backends. The embedded H2 database
and external MySQL and PostgreSQL are supported. H2 database (the default) requires
no additional configuration actions. In any case XUUDB will automatically create the
required database tables.

For MySQL you have to properly set up the server and create a database. After installing and
starting the MySQL server login to its using MySQL client as administrator and using a commands
similar to the below ones, create a database and assign full access to a xuudb user.

create database xuudb;
grant all on xuudb.* to 'xuudbuser'@'127.0.0.1' identified by 'pass';

For PostgreSQL, the commands to create the DB and the required user would be (similar to):

sudo -u postgres createuser -P unicore
sudo -u postgres createdb -O unicore xuudb

Check that the PostgreSQL server allows for password authentication for the UNICORE user.
Ensure that in pg_hba.conf you have lines similar to these:

host all all 127.0.0.1/32 md5
host all all ::1/128 md5

Of course you are free to choose different names for the user, password and database. If XUUDB
server is installed on other host then the proper address must be set instead of localhost.

Use the following properties to configure database connection from the XUUDB server. In case of
external database pay attention to enter proper values.

Table 18 XUUDB Server database configuration

	Property name

	Type

	Default value / mandatory

	Description

	xuudb.db.charset

	string

	utf8

	(MySQL) Charset to use for XUUDB tables.

	xuudb.db.dialect

	[h2, mysql, pgsql]

	h2

	Database SQL dialect. Must match the selected driver, however sometimes more then one driver can be available for a dialect.

	xuudb.db.driver

	Class extending java.sql.Driver

	org.h2.Driver

	Database driver class name. This property is optional - if not set, then a default driver for the chosen database type is used.

	xuudb.db.jdbcUrl

	string

	jdbc:h2:data/xuudb2

	Database JDBC URL.

	xuudb.db.password

	string

	empty string

	Database password.

	xuudb.db.username

	string

	sa

	Database username.

Configuring advanced HTTP server settings

UNICORE servers are using an embedded Jetty HTTP server. In most cases the default configuration
should be perfectly fine. However, for some sites (e.g. experiencing an extremely high load)
HTTP server settings can be fine-tuned with the following parameters:

	Property name

	Type

	Default value / mandatory

	Description

	xuudb.httpServer.CORS_allowedHeaders

	string

	*

	CORS: comma separated list of allowed HTTP headers (default: any)

	xuudb.httpServer.CORS_allowedMethods

	string

	GET,PUT,POST,DELETE,HEAD

	CORS: comma separated list of allowed HTTP verbs.

	xuudb.httpServer.CORS_allowedOrigins

	string

	*

	CORS: allowed script origins.

	xuudb.httpServer.CORS_chainPreflight

	[true, false]

	false

	CORS: whether preflight OPTION requests are chained (passed on) to the resource or handled via the CORS filter.

	xuudb.httpServer.CORS_exposedHeaders

	string

	Location,Content-Type

	CORS: comma separated list of HTTP headers that are allowed to be exposed to the client.

	xuudb.httpServer.disabledCipherSuites

	string

	empty string

	Space separated list of SSL cipher suites to be disabled. Names of the ciphers must adhere to the standard Java cipher names, available here: http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SupportedCipherSuites

	xuudb.httpServer.enableCORS

	[true, false]

	false

	Control whether Cross-Origin Resource Sharing is enabled. Enable to allow e.g. accesing REST services from client-side JavaScript.

	xuudb.httpServer.enableHsts

	[true, false]

	false

	Control whether HTTP strict transport security is enabled. It is a good and strongly suggested security mechanism for all production sites. At the same time it can not be used with self-signed or not issued by a generally trusted CA server certificates, as with HSTS a user can’t opt in to enter such site.

	xuudb.httpServer.enableSNI

	[true, false]

	false

	Enable Server Name Indication (SNI)

	xuudb.httpServer.fastRandom

	[true, false]

	false

	Use insecure, but fast pseudo random generator to generate session ids instead of secure generator for SSL sockets.

	xuudb.httpServer.gzip.enable

	[true, false]

	false

	Controls whether to enable compression of HTTP responses.

	xuudb.httpServer.gzip.minGzipSize

	integer number

	100000

	Specifies the minimal size of message that should be compressed.

	xuudb.httpServer.maxConnections

	integer >= 0

	0

	Maximum number of incoming connections to this server. If set to a value larger than 0, incoming connections will be limited to that number. Default is 0 = unlimited.

	xuudb.httpServer.maxIdleTime

	integer >= 1

	200000

	Time (in ms.) before an idle connection will time out. It should be large enough not to expire connections with slow clients, values below 30s are getting quite risky.

	xuudb.httpServer.maxThreads

	integer number

	255

	Maximum number of threads to have in the thread pool for processing HTTP connections. Note that this number will be increased with few additional threads to handle connectors.

	xuudb.httpServer.minThreads

	integer >= 1

	1

	Minimum number of threads to have in the thread pool for processing HTTP connections. Note that this number will be increased with few additional threads to handle connectors.

	xuudb.httpServer.requireClientAuthn

	[true, false]

	true

	Controls whether the SSL socket requires client-side authentication.

	xuudb.httpServer.wantClientAuthn

	[true, false]

	true

	Controls whether the SSL socket accepts (but does not require) client-side authentication.

	xuudb.httpServer.xFrameAllowed

	string

	http://localhost

	URI origin that is allowed to embed web interface inside a (i)frame. Meaningful only if the xFrameOptions is set to ‘allowFrom’. The value should be in the form: ‘http[s]://host[:port]’

	xuudb.httpServer.xFrameOptions

	[deny, sameOrigin, allowFrom, allow]

	deny

	Defines whether a clickjacking prevention should be turned on, by insertionof the X-Frame-Options HTTP header. The ‘allow’ value disables the feature. See the RFC 7034 for details. Note that for the ‘allowFrom’ you should define also the xFrameAllowed option and it is not fully supported by all the browsers.

Example

In this example we will turn on compression of all responses bigger then 50kB
(assuming that the client supports decompression). Additionally, we are limiting the number of
concurrent clients that can be served to more or less 50, while keeping 10 threads ready all
the time to server new clients quicker.

jetty.gzip.enable=true
jetty.gzip.minGzipSize=51200
jetty.maxThreads=50
jetty.minThreads=10

Configuring PKI trust settings

Public Key Infrastructure (PKI) trust settings are used to validate
certificates. This is performed, in the first place when a connection with a remote peer
is initiated over the network, using the SSL (or TLS) protocol. Additionally, certificate
validation can happen in few other situations, e.g. when checking digital signatures of
various sensitive pieces of data.

Certificates validation is primarily configured using a set of initially trusted certificates
of so called Certificate Authorities (CAs). Those trusted certificates are also
known as trust anchors and their collection is called a trust store.

Except of trust anchors validation mechanism can use additional input for checking if a
certificate being checked was not revoked and if its subject is in a permitted namespace.

UNICORE allows for different types of trust stores. All of them are configured using a set of
properties:

	Keystore trust store - the only format supported in older UNICORE versions. Trusted
certificates are stored in a single binary file in JKS or PKCS12 format. The file can be only
manipulated using a special tool like JDK keytool or openssl (in case of PKCS12 format).
This format is great if trust store should be in a single file or when compatibility with
other Java solutions or older UNICORE releases is desired.

	OpenSSL trust store - allows to use a directory with CA certificates stored in PEM format,
under precisely defined names: the CA certificates, CRLs, signing policy files and namespaces
files are named <hash>.0, <hash>.r0, <hash>.signing_policy and <hash>.namespaces.
Hash is the old hash of the trusted CA certificate subject name (in Openssl version > 1.0.0
use -subject_hash_old switch to generate it). If multiple certificates have the same hash then
the default zero number must be increased. This format is the same as used by other then
UNICORE popular middlewares as Globus and gLite. It is suggested when a common trust store
with such middlewares is needed.

	Directory trust store - the most flexible and convenient option, suggested for all remaining
cases. It allows to use a list of wildcard expressions, concrete paths of files or even URLs
to remote files as a set of trusted CAs and in the same way for the CRLs. With this trust
store administrator can simply configure all files (or all with a specified extension)
in a directory to be used as a trusted certificates.

In all cases trust stores can be (and by default are) configured to be automatically refreshed.

	Property name

	Type

	Default value / mandatory

	Description

	xuudb.truststore.allowProxy

	[ALLOW, DENY]

	ALLOW

	Controls whether proxy certificates are supported.

	xuudb.truststore.type

	[keystore, openssl, directory]

	
mandatory

	The truststore type.

	xuudb.truststore.updateInterval

	integer number

	600

	How often the truststore should be reloaded, in seconds. Set to negative value to disable refreshing at runtime.(runtime updateable)

	xuudb.truststore.directoryConnectionTimeout

	integer number

	15

	Connection timeout for fetching the remote CA certificates in seconds.

	xuudb.truststore.directoryDiskCachePath

	filesystem path

	
	Directory where CA certificates should be cached, after downloading them from a remote source. Can be left undefined if no disk cache should be used. Note that directory should be secured, i.e. normal users should not be allowed to write to it.

	xuudb.truststore.directoryEncoding

	[PEM, DER]

	PEM

	For directory truststore controls whether certificates are encoded in PEM or DER. Note that the PEM file can contain arbitrary number of concatenated, PEM-encoded certificates.

	xuudb.truststore.directoryLocations.*

	list of properties with a common prefix

	
	List of CA certificates locations. Can contain URLs, local files and wildcard expressions.(runtime updateable)

	xuudb.truststore.keystoreFormat

	string

	
	The keystore type (jks, pkcs12) in case of truststore of keystore type.

	xuudb.truststore.keystorePassword

	string

	
	The password of the keystore type truststore.

	xuudb.truststore.keystorePath

	string

	
	The keystore path in case of truststore of keystore type.

	xuudb.truststore.opensslNewStoreFormat

	[true, false]

	false

	In case of openssl truststore, specifies whether the trust store is in openssl 1.0.0+ format (true) or older openssl 0.x format (false)

	xuudb.truststore.opensslNsMode

	[GLOBUS_EUGRIDPMA, EUGRIDPMA_GLOBUS, GLOBUS, EUGRIDPMA, GLOBUS_EUGRIDPMA_REQUIRE, EUGRIDPMA_GLOBUS_REQUIRE, GLOBUS_REQUIRE, EUGRIDPMA_REQUIRE, EUGRIDPMA_AND_GLOBUS, EUGRIDPMA_AND_GLOBUS_REQUIRE, IGNORE]

	EUGRIDPMA_GLOBUS

	In case of openssl truststore, controls which (and in which order) namespace checking rules should be applied. The ‘REQUIRE’ settings will cause that all configured namespace definitions files must be present for each trusted CA certificate (otherwise checking will fail). The ‘AND’ settings will cause to check both existing namespace files. Otherwise the first found is checked (in the order defined by the property).

	xuudb.truststore.opensslPath

	filesystem path

	/etc/grid-security/certificates

	Directory to be used for opeenssl truststore.

	xuudb.truststore.crlConnectionTimeout

	integer number

	15

	Connection timeout for fetching the remote CRLs in seconds (not used for Openssl truststores).

	xuudb.truststore.crlDiskCachePath

	filesystem path

	
	Directory where CRLs should be cached, after downloading them from remote source. Can be left undefined if no disk cache should be used. Note that directory should be secured, i.e. normal users should not be allowed to write to it. Not used for Openssl truststores.

	xuudb.truststore.crlLocations.*

	list of properties with a common prefix

	
	List of CRLs locations. Can contain URLs, local files and wildcard expressions. Not used for Openssl truststores.(runtime updateable)

	xuudb.truststore.crlMode

	[REQUIRE, IF_VALID, IGNORE]

	IF_VALID

	General CRL handling mode. The IF_VALID setting turns on CRL checking only in case the CRL is present.

	xuudb.truststore.crlUpdateInterval

	integer number

	600

	How often CRLs should be updated, in seconds. Set to negative value to disable refreshing at runtime.(runtime updateable)

	xuudb.truststore.ocspCacheTtl

	integer number

	3600

	For how long the OCSP responses should be locally cached in seconds (this is a maximum value, responses won’t be cached after expiration)

	xuudb.truststore.ocspDiskCache

	filesystem path

	
	If this property is defined then OCSP responses will be cached on disk in the defined folder.

	xuudb.truststore.ocspLocalResponders.<NUMBER>

	list of properties with a common prefix

	
	Optional list of local OCSP responders

	xuudb.truststore.ocspMode

	[REQUIRE, IF_AVAILABLE, IGNORE]

	IF_AVAILABLE

	General OCSP ckecking mode. REQUIRE should not be used unless it is guaranteed that for all certificates an OCSP responder is defined.

	xuudb.truststore.ocspTimeout

	integer number

	10000

	Timeout for OCSP connections in miliseconds.

	xuudb.truststore.revocationOrder

	[CRL_OCSP, OCSP_CRL]

	OCSP_CRL

	Controls overal revocation sources order

	xuudb.truststore.revocationUseAll

	[true, false]

	false

	Controls whether all defined revocation sources should be always checked, even if the first one already confirmed that a checked certificate is not revoked.

Examples

Note

Various UNICORE modules use different property prefixes. Here we don’t put any, but in practice
you have to use the prefix (see the reference table above for the actual prefix). Also properties
might need to be provided using different syntax, as XML.

Directory trust store, with a minimal set of options:

truststore.type=directory
truststore.directoryLocations.1=/trust/dir/*.pem
truststore.crlLocations=/trust/dir/*.crl

Directory trust store, with a complete set of options:

truststore.type=directory
truststore.allowProxy=DENY
truststore.updateInterval=1234
truststore.directoryLocations.1=/trust/dir/*.pem
truststore.directoryLocations.2=http://caserver/ca.pem
truststore.directoryEncoding=PEM
truststore.directoryConnectionTimeout=100
truststore.directoryDiskCachePath=/tmp
truststore.crlLocations.1=/trust/dir/*.crl
truststore.crlLocations.2=http://caserver/crl.pem
truststore.crlUpdateInterval=400
truststore.crlMode=REQUIRE
truststore.crlConnectionTimeout=200
truststore.crlDiskCachePath=/tmp

Openssl trust store:

truststore.type=openssl
truststore.opensslPath=/truststores/openssl
truststore.opensslNsMode=EUGRIDPMA_GLOBUS_REQUIRE
truststore.allowProxy=ALLOW
truststore.updateInterval=1234
truststore.crlMode=IF_VALID

Java keystore used as a trust store:

truststore.type=keystore
truststore.keystorePath=src/test/resources/certs/truststore.jks
truststore.keystoreFormat=JKS
truststore.keystorePassword=xxxxxx

Configuring the credential

UNICORE uses private key and a corresponding certificate (called together as a credential) to
identify users and servers. Credentials might be provided in several formats:

	Credential can be obtained from a keystore file, encoded in JKS or PKCS12 format,

	Credential can be loaded as a pair of PEM files (one with private key and another
with certificate),

	or from a pair of DER files,

	or even from a single file, with PEM-encoded certificates and private key (in any order).

The following table list all parameters which allows for configuring the credential. Note that
nearly all options are optional. If not defined, the format is tried to be guessed. However, some
credential formats require additional settings. For instance, if using der format the keyPath is
mandatory as you need two DER files: one with certificate and one with the key (and the latter can
not be guessed).

	Property name

	Type

	Default value / mandatory

	Description

	xuudb.credential.path

	filesystem path

	
mandatory

	Credential location. In case of ‘jks’, ‘pkcs12’ and ‘pem’ store it is the only location required. In case when credential is provided in two files, it is the certificate file path.

	xuudb.credential.format

	[jks, pkcs12, der, pem]

	
	Format of the credential. It is guessed when not given. Note that ‘pem’ might be either a PEM keystore with certificates and keys (in PEM format) or a pair of PEM files (one with certificate and second with private key).

	xuudb.credential.password

	string

	
	Password required to load the credential.

	xuudb.credential.keyPath

	string

	
	Location of the private key if stored separately from the main credential (applicable for ‘pem’ and ‘der’ types only),

	xuudb.credential.keyPassword

	string

	
	Private key password, which might be needed only for ‘jks’ or ‘pkcs12’, if key is encrypted with different password then the main credential password.

	xuudb.credential.keyAlias

	string

	
	Keystore alias of the key entry to be used. Can be ignored if the keystore contains only one key entry. Only applicable for ‘jks’ and ‘pkcs12’.

	xuudb.credential.reloadOnChange

	[true, false]

	true

	Monitor credential location and trigger dynamical reload if file changes.

Examples

Note

Various UNICORE modules use different property prefixes. Here we don’t put any, but in practice
you have to use the prefix (see the reference table above for the actual prefix). Also
properties might need to be provided using different syntax, as XML.

Credential as a pair of DER files:

credential.format=der
credential.password=the\!njs
credential.path=/etc/credentials/cert-1.der
credential.keyPath=/etc/credentials/pk-1.der

Credential as a JKS file (credential type can be autodetected in almost every case):

credential.path=/etc/credentials/server1.jks
credential.password=xxxxxx

Dynamic mappings configuration

Dynamic mappings are configured with a set of rules. When designing rules it is good
to remember that all users, which will be evaluated, were already successfully authorized.

Each rule has a condition which selects users and a list of mappings which should be
applied for the selected users. Example conditions (in English):

	all members of a /vo.wonderworld.gov

	all (authorized) users

	all users having extra attribute matlabAllowed with any value AND being member of a subgroup of
/vo.wonderworld.gov/dynamic/

Example mappings (in English):

	add user a supplementary group matlab

	assign uid from a pool of existing uids

	assign a fixed gid grid

	invoke an external program and use its standard output as users gid

Precisely speaking, a mapping must have defined:

	what attribute it maps: uid, (primary)gid or supplementaryGids

	using what method: fixed, pool or script

Additionally, one can define an optional parameter stating if the mapping should overwrite
an attribute value which was previously set (either by an earlier rule or assigned using a
different attribute source).

As it was mentioned, there are three kinds of mappings. Let’s shortly introduce them one by one.

Fixed mappings

Fixed mappings are the most basic option. The mapping is formed by a simple assignment of a
fixed value. It can be used to:

	assign a common (shared!) uid to selected users (rarely used)

	assign a fixed gid to selected users (very useful to assign a gid to all Grid users, or
all members of a VO)

	assign some supplementary gids to selected users (useful to provide additional local permissions
to users having a special role/attributes/etc.)

The example in the pool mappings section contains also a fixed mapping.

Script mappings

Script mappings are the Do It Yourself mechanism. You can provide a command line which will
be parsed and invoked. The application must return (on its standard output) a string with a
mapping result (depending on what is mapped - gid, uid or a space separated list of supplementary
gids). Of course the script can be informed who is actually being mapped, by using parameters
enclosed in ${}. The list of available parameters is given below:

	userDN user’s DN

	issuerDN user’s certificate issuer’s DN

	role user’s role

	vo user’s selected VO

	extraAttributes map with extra attributes, names are the keys

	xlogin user’s uid (if already established)

	gid user’s gid (if already established)

	supplementaryGids user’s supplementary gids (if already established)

	xloginSet whether uid was set

	gidSet whether gid was set

	dryRun whether the current invocation is only a simulation, and shouldn’t
affect any persisted system settings

The example below contains also a script mapping.

Pool mappings

Finally, the pool mappings are both flexible and relatively easy to use — it is the most advanced
mapping type. Using the pool mapping you have to prepare a set of reserved identifiers (uids or gids
depending on what is mapped). The related system accounts can be precreated or can be created on-demand.
The pool mapping is configured with an additional, very important parameter: pool key. Pool key is
a name of one of the user’s attributes: userDN, issuerDN (DN of CA which issued user’s certificate),
role, vo or any other generic user’s attribute.

To explain how the pool works let’s assume that key is set to userDN. Then
the pool will map a user as follows: first it is checked if there is an existing mapping
bound to the user’s DN. If it is found then it is simply returned. If not (the user is trying to use
the site for the first time) a new identifier is selected from the pool, and stored under the key
being the user’s DN. Then the new identifier is returned.

Therefore, all users having the same value of the pool key will get the same mapping and vice versa.
If DN is the key then all users will have a distinct mapping (useful for uids or for gids, if every
user should get a unique one). If, for instance, a VO is the key then all VO members will have the same
mapping (useful for gid, or for uid if all VO members should have the same user account).

The following example should help to understand those concepts and is also providing
a basic syntax reference:

<?xml version="1.0" encoding="UTF-8"?>
<dynamicAttributes xmlns="http://unicore.eu/xuudb/dynamicAttributesRules"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <rules>
 <!-- all members of the vo /vo.wonderworld.gov should have a common uid 'shared_user'-->
 <rule>
 <condition>vo.matches("/vo.wonderworld.gov/.*")</condition>
 <mapping type="fixed" maps="uid">shared_user</mapping>
 </rule>

 <!-- all users with a role 'admin' should get a primary gid from the 'admins-pool' pool.
 For pools the 'maps' parameter is optional - it is better to specify it in the pool definition,
 below. -->
 <rule>
 <condition>role="admin"</condition>
 <mapping type="pool">admins-pool</mapping>
 </rule>

 <!-- all users from the /biology VO get an uid from the pool and a fixed primary gid 'biol' -->
 <rule>
 <condition>vo.matches("/biology/.*")</condition>
 <mapping type="pool">biology-uids-pool</mapping>
 <mapping type="fixed" maps="gid">biol</mapping>
 </rule>

 <!-- complicated condition: all users who have a generic attribute 'matlabAllowed' set AND the value
 of this attribute is 'true' get a supplementary group 'matlab' -->
 <rule>
 <condition>attributes["matlabAllowed"] != null and attributes["matlabAllowed"].contains("true")</condition>
 <mapping type="fixed" maps="supplementaryGids">matlab</mapping>
 </rule>

 <!-- all (authorized) users, who do not have an uid set (overwriteExisting=false)
 should have an uid assigned by a script /usr/local/bin/create-mapping.pl. The script will be called
 with two arguments: user's DN and VO.
 <rule>
 <condition>true</condition>
 <mapping type="script" maps="uid" overwriteExisting="false">/usr/local/bin/create-mapping.pl "${userDN}" "${vo}" </mapping>
 </rule>
 </rules>

 <!-- Here come pools -->
 <pools>
 <!-- pool 'admins-pool' maps gids. The list of gids provides groups which were
 pre-created in the system. The gids will be stored per-user dn, so every admin will get another group.
 Finally the list of gids uses special expressions where number ranges are provided.
 -->
 <pool id="admins-pool" type="gid" key="dn" precreated="true">
 <id>admin_grp[1-100]</id>
 <id>admin_grp[200-1000]</id>
 </pool>
 <!-- This pool identifiers are loaded from an external file -->
 <pool id="biology-uids-pool" type="uid" key="dn" precreated="true">
 <file>src/test/resources/externalUidsPool</file>
 </pool>
 </pools>
</dynamicAttributes>

Usage of pools brings several issues regarding old mappings removal and notifications about pools
getting empty. In the first case it suggested not to remove the users for the time a VO or Grid is
supported: it is a simplest approach, and nowadays operating systems can support thousands of uids
without any problem (Linux can have 32bit uid numbers).

In case a site wants to recycle mappings, XUUDB offers the following mechanism:

	Inactive mappings can be automatically (after a configurable time threshold) or manually
(using the admin client) frozen. An identifier belonging to a frozen mapping is still
assumed to be occupied, but the mapped user won’t have it assigned (in the unprobable case that she
returns to the site). Freezing is introduced to give a time for tidying up local resources assigned to
the identifier. Such cleaning must be done manually and should include removal of all owned
files and killing any processes. Of course, this depends whether the identifier was a gid or uid.
Also please note that in case of clusters, all nodes should be cleaned up.

	After the clean up is done, the frozen mapping can be removed, again manually using the admin client
or automatically, after staying in the frozen state for a specified amount of time. Note that
it is impossible to remove an alive mapping.

If administrator is able to provide scripts which performs cleanup, then it is possible to invoke
them upon pool mapping freezing and automate the whole process. In a similar way other handlers
may be configured and XUUDB will invoke them to notify about mappings removal, assignment of a new mapping
(useful when accounts are not pre-created but should be created on demand) and also when
a pool is getting empty.

The following example shows all the possible handlers and lists arguments which are passed to them.
As it can be seen all pool options including handlers, can be configured globally or per-pool.

<?xml version="1.0" encoding="UTF-8"?>
<dynamicAttributes xmlns="http://unicore.eu/xuudb/dynamicAttributesRules"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <!-- how often (in s) pools should be checked for old or inactive mappings -->
 <poolMonitoringDelay>300</poolMonitoringDelay>
 <defaultConfiguration>
 <!-- in seconds: automatic freezeing (time measured from last mapping use)... -->
 <automaticFreezeAfter>3600000</automaticFreezeAfter>
 <!-- ... and final removal (time measurd from mapping freeze) -->
 <automaticDeleteAfter>36000</automaticDeleteAfter>
 <!-- when less then this free mappings are left generate a warning -->
 <emptyWarningAbsolute>20</emptyWarningAbsolute>
 <!-- when less then this percent of free mappings is left generate a warning -->
 <emptyWarningPercent>5</emptyWarningPercent>

 <!-- timeout for running ALL external programms -->
 <handlerInvocationTimeLimit>10000</handlerInvocationTimeLimit>

 <!-- Various handlers. Arguments are pool.getId(), pool.getType().toString(),
 bean.getEntry(), oldSec+"" -->

 <!-- Handler invoked before freezing an account.
 Arguments: <poolId> <poolType> <identifier> <inactiveForInSeconds>
 If handler returns a non-zero exit status then the freezing is skipped
 (unless invoked by admin-client).
 -->
 <handlerAboutToFreeze>/opt/handlers/releaseAccountResources.sh</handlerAboutToFreeze>

 <!-- Handler invoked before deleting a frozen identifier.
 Arguments: <poolId> <poolType> <identifier> <frozenForInSeconds>
 If handler returns a non-zero exit status then the deletion is skipped
 (unless invoked by admin-client).
 -->
 <handlerAboutToDelete>/opt/handlers/notifyAccountRecycled.sh</handlerAboutToDelete>

 <!-- Handler invoked when an identified from the uids pool is going to be used for the first time
 (or for the first time after deleting it), if the pool is set as not pre-created.
 Arguments: <poolId> <uid> <key>
 -->
 <handlerCreateSystemUid>/opt/handlers/adduser.sh</handlerCreateSystemUid>

 <!-- Handler invoked when an identified from the gids pool is going to be used for the first time
 (or for the first time after deleting it), if the pool is set as not pre-created.
 Arguments: <poolId> <gid> <key>
 -->
 <handlerCreateSystemGid>/opt/handlers/addgroup.sh</handlerCreateSystemGid>

 <!-- Handler invoked when a pool warning threshold is exceeded.
 Arguments: <poolId> <poolType> <remainingFreeIds>
 -->
 <handlerPoolGettingEmpty>/opt/handlers/notifyNearlyEmpty.sh</handlerPoolGettingEmpty>

 <!-- Handler invoked when a pool gets empty.
 Arguments: <poolId> <poolType>
 -->
 <handlerPoolEmpty>/opt/handlers/notifyEmpty.sh</handlerPoolEmpty>
 </defaultConfiguration>

 <rules>
 <!-- some rules -->
 </rules>

 <pools>
 <!-- Pool can overwrite any of the global configuration options -->
 <pool id="admins-pool" type="gid" key="dn" precreated="true">
 <configuration>
 <!-- disable automatic freezing for this pool -->
 <automaticFreezeAfter>-1</automaticFreezeAfter>
 </configuration>
 <id>admin_grp[1-100]</id>
 <id>admin_grp[200-1000]</id>
 </pool>
 </pools>
</dynamicAttributes>

Starting the XUUDB server

Start the server with

$ BIN/start.sh

In case if XUUDB was installed with binary package use:

$ /etc/init.d/unicore-xuudb start

Stopping the server

Stop the server with

$ BIN/stop.sh

This sends a TERM signal to the XUUDB process. Please do not use kill -9
to stop XUUDB, to avoid corrupting the database.

In case if XUUDB was installed with binary package use:

$ /etc/init.d/unicore-xuudb stop

Logging

UNICORE uses the Log4j [https://logging.apache.org/log4j/] logging framework. It is configured
using a config file. By default, this file is found in components configuration directory and is
named logging.properties. The config file is specified with a Java property
log4j.configuration (which is set in startup script).

Several libraries used by UNICORE also use the Java utils logging facility (the output is two-lines
per log entry). For convenience its configuration is also controlled in the same
logging.properties file and is directed to the same destination as the main Log4j output.

Note

You can change the logging configuration at runtime by editing the logging.properties file.
The new configuration will take effect a few seconds after the file has been modified.

By default, log files are written to the LOGS directory.

The following example config file configures logging so that log files are rotated daily:

Set root logger level to INFO and its only appender to A1.
log4j.rootLogger=INFO, A1

A1 is set to be a rolling file appender with default params
log4j.appender.A1=org.apache.log4j.DailyRollingFileAppender
log4j.appender.A1.File=logs/uas.log

#configure daily rollover: once per day the uas.log will be copied
#to a file named e.g. uas.log.2008-12-24
log4j.appender.A1.DatePattern='.'yyyy-MM-dd

A1 uses the PatternLayout
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c{1} %x - %m%n

Note

In Log4j, the log rotation frequency is controlled by the DatePattern.
Check http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html
for the details.

For more info on controlling the logging we refer to the log4j documentation:

	PatternLayout [https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html]

	RollingFileAppender [https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/RollingFileAppender.html]

	DailyRollingFileAppender [https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html]

Log4j supports a very wide range of logging options, such as date based or size based file
rollover, logging different things to different files and much more. For full information on
Log4j we refer to the publicly available documentation, for example, the Log4j manual [https://logging.apache.org/log4j/1.2/manual.html].

Logger categories, names and levels

Logger names are hierarchical. In UNICORE, prefixes are used (e.g. unicore.security) to which
the Java class name is appended. For example, the XUUDB connector in UNICORE/X logs to the
unicore.security.XUUDBAuthoriser logger.

Therefore, the logging output produced can be controlled in a fine-grained manner. Log levels in
Log4j are (in increasing level of severity):

	TRACE on this level huge pieces of unprocessed information are dumped

	DEBUG on this level UNICORE logs (hopefully) admin-friendly, verbose information, useful
for hunting problems

	INFO standard information, not much output

	WARN warnings are logged when something went wrong (so it should be investigated),
but recovery was possible

	ERROR something went wrong and operation probably failed

	FATAL something went really wrong - this is used very rarely for critical situations like server
failure

For example, to debug a security problem in the UNICORE security layer, you can set:

log4j.logger.unicore.security=DEBUG

If you are just interested in details of credentials handling, but not everything related to
security you can use the following:

log4j.logger.unicore.security=INFO
log4j.logger.unicore.security.CredentialProperties=DEBUG

so the XUUDBAuthoriser will log on DEBUG level, while the other security components log
on INFO level.

Note

You could turn on the general unicore DEBUG logging for a while (so the full category
is printed). Then interesting events can be seen and subsequently the logging configuration
can be fine tuned to only show them.

Several logging categories common in XUUDB:

	Log category

	Description

	unicore

	All of UNICORE

	unicore.security

	Security layer

	unicore.client

	Client calls (to other servers)

	unicore.xuudb

	XUUDB related

	unicore.xuudb.server

	XUUDB server

	unicore.xuudb.server.db

	XUUDB server database layer

	unicore.xuudb.client

	XUUDB admin client

The admin client

The admin client is used to edit the XUUDB, using a web service interface.
It is configured in the file CONF/xuudb_client.conf.
Client is invoked using the following pattern:

$ ADMIN <command> <options>

You can get detailed usage info by calling the admin script without
any options. As it was noted above the actual utility path is dependent on how
XUUDB was installed: it is either /usr/sbin/unicore-xuudb-admin or
INST/bin/admin.sh.

Note

To switch on the confirmation message asked by the add
command, edit the admin.sh script, so that the xuudb.batch property
is set to false.

The client configuration requires the URL of the XUUDB server in the property xuudb.address
and in case of secure HTTPS connections also a configuration truststore and credential. The settings
are exactly the same as in case of the XUUDB server, so refer to its documentation Configuring PKI trust settings.

Configuring advanced HTTP client settings

UNICORE client stack can be configured with several advanced options. In most cases you can skip
this section as defaults are fine.

The following table lists all available options. A special note for the http.* properties: those
are passed to the Apache Commons HTTP Client library. Therefore, it is possible to configure all
relevant options of the client. The options are listed under this address:
https://hc.apache.org/httpclient-legacy/preference-api.html. Also see the example below.

	Property name

	Type

	Default value / mandatory

	Description

	xuudb.client.digitalSigningEnabled

	[true, false]

	true

	Controls whether signing of key web service requests should be performed.

	xuudb.client.httpAuthnEnabled

	[true, false]

	false

	Whether HTTP basic authentication should be used.

	xuudb.client.httpPassword

	string

	empty string

	Password for use with HTTP basic authentication (if enabled).

	xuudb.client.httpUser

	string

	empty string

	Username for use with HTTP basic authentication (if enabled).

	xuudb.client.maxWsCallRetries

	integer number

	3

	Controls how many times the client should try to call a failing web service. Note that only the transient failure reasons cause the retry. Note that value of 0 enables unlimited number of retries, while value of 1 means that only one call is tried.

	xuudb.client.messageLogging

	[true, false]

	false

	Controls whether messages should be logged (at INFO level).

	xuudb.client.securitySessions

	[true, false]

	true

	Controls whether security sessions should be enabled.

	xuudb.client.serverHostnameChecking

	[NONE, WARN, FAIL]

	WARN

	Controls whether server’s hostname should be checked for matching its certificate subject. This verification prevents man-in-the-middle attacks. If enabled WARN will only print warning in log, FAIL will close the connection.

	xuudb.client.sslAuthnEnabled

	[true, false]

	true

	Controls whether SSL authentication of the client should be performed.

	xuudb.client.sslEnabled

	[true, false]

	true

	Controls whether the SSL/TLS connection mode is enabled.

	xuudb.client.wsCallRetryDelay

	integer number

	10000

	Amount of milliseconds to wait before retry of a failed web service call.

	xuudb.client.http.allow-chunking

	[true, false]

	true

	If set to false, then the client will not use HTTP 1.1 data chunking.

	xuudb.client.http.connection-close

	[true, false]

	false

	If set to true then the client will send connection close header, so the server will close the socket.

	xuudb.client.http.connection.timeout

	integer number

	20000

	Timeout for the connection establishing (ms)

	xuudb.client.http.maxPerRoute

	integer number

	6

	How many connections per host can be made. Note: this is a limit for a single client object instance.

	xuudb.client.http.maxRedirects

	integer number

	3

	Maximum number of allowed HTTP redirects.

	xuudb.client.http.maxTotal

	integer number

	20

	How many connections in total can be made. Note: this is a limit for a single client object instance.

	xuudb.client.http.socket.timeout

	integer number

	0

	Socket timeout (ms)

	xuudb.client.http.nonProxyHosts

	string

	
	Space (single) separated list of hosts, for which the HTTP proxy should not be used.

	xuudb.client.http.proxy.password

	string

	
	Relevant only when using HTTP proxy: defines password for authentication to the proxy.

	xuudb.client.http.proxy.user

	string

	
	Relevant only when using HTTP proxy: defines username for authentication to the proxy.

	xuudb.client.http.proxyHost

	string

	
	If set then the HTTP proxy will be used, with this hostname.

	xuudb.client.http.proxyPort

	integer number

	
	HTTP proxy port. If not defined then system property is consulted, and as a final fallback 80 is used.

	xuudb.client.http.proxyType

	string

	HTTP

	HTTP proxy type: HTTP or SOCKS.

Example

Note

Various UNICORE modules use different property prefixes. Here we don’t put any, but in practice
you have to use the prefix (see the reference table above for the actual prefix). Also properties
might need to be provided using different syntax, as XML.

Here we are setting an extremely short connection and socket timeouts for the clients calls, using
the Apache HTTP client parameters. Additionally server hostname to certificate subject name
checking is set to cause connections failures, preventing man in the middle attacks.

client.http.connection.timeout=2000
client.http.socket.timeout=2000
client.serverHostnameChecking=FAIL

Commands

The help with examples is provided for each command. You can use helpAll to print
a reference documentation for all commands. Selected commands are also described below.

[classic]
 add
 adddn
 check-cert (chc)
 check-dn (chdn)
 export
 import
 list
 remove
 update

[dynamic]
 findMapping (fm)
 findReverseMapping (fr)
 freezeMappings
 getDynamicAttributes (getDyn)
 listMappings (lm)
 listPools (lp)
 removeMappings
 removePool (rmp)
 simulate (sim)

[other]
 help
 helpAll

Common options:

	gcID

	The so-called grid component ID is used to group entries, and
must match the setting in the UNICORE/X configuration file
uas.config. For example, if you have two systems with
different user name mappings, you can handle both with a
single XUUDB, since you can store two user name mappings for
each certificate, by choosing a different gcID for both
systems.
When updating xuudb entries, the special gcid * can be used as
wildcard for updating user entries on all systems.

	pemfile

	A file containing a public key in PEM format .

	DN

	The distinguished name of a user.

	xlogin

	xlogins (from UNIX login) are used for incarnation. Grid user’s request which
results in invocation of operations on a target system (usually through BSS)
must be mapped to a local UNIX user. This attribute specifies the XLogins which
are valid for the user. The first one is also used as a default one, if user
does not request a particular one. Multiple logins can be specified using a :.

	project

	Defines a primary group UNIX group for a user. If it is undefined then a
default group for the XLogin is used.

	role

	The usual roles in UNICORE are user for a normal user, and
admin for an administrator. Custom roles can be added, and can
be assigned permissions in the UNICORE/X security policy file.

Adding entries using add or adddn

Example using the DN:

$ ADMIN adddn DEMO-SITE "CN=John Doe, O=Test Inc" userlogin user

Example using a pem file:

$ ADMIN add DEMO-SITE /path/to/usercert.pem userlogin user

Note

When extracting the DN from a certificate file using OpenSSL,
make sure to use the RFC2253 option, for example,

$ openssl x509 -in demouser.pem -noout -subject -nameopt RFC2253

Checking the content

Apart from list, you can use the check-cert and check-dn
commands to see what the XUUDB contains for a certain certificate or
DN.

Removing entries

To remove all entries from xuudb (you will have to confirm this)

$ ADMIN remove ALL

To remove some entries, you have to specify attributes.

To remove a user with cert cert.pem at gcid MYSITE:

$ ADMIN remove gcid=MYSITE pemfile=/path/cert.pem

To remove all users from gcid OLDMACHINE:

$ ADMIN remove gcid=OLDMACHINE

To remove a user with xlogin jdoe from all gcids:

$ ADMIN remove xlogin=jdoe

Exporting/importing

The export command creates a csv file, which will contain the complete
XUUDB database:

$ ADMIN export uudb.csv

If the file already exists, the export tool will complain. To override
this, please specify the overwrite option, e.g.

$ ADMIN export uudb.csv overwrite

The import command takes the a csv file (as generated by export) and
imports all entries. Already existing entries will not be changed. To
do updates, execute admin.sh remove ALL before, or specify clearDB as a second
argument:

$ ADMIN import uudb.csv

Updating entries

The update command can be used to modify existing entries, for example to
replace the certificate or the login. For example,

$ ADMIN update DEMO-SITE certs/demouser.pem xlogin=jb007

would update the entry identified by the gcID DEMO-SITE and the given pem
file, and assign a new xlogin. If you want to update a user’s entry on all
the sites, you would use:

$ ADMIN update * certs/demouser.pem xlogin=jb007

Note

The wildcard * is a special character for the shell and needs to be
escaped with a backslash.

Workflow Service

The Workflow service is a server component that supports submission
and execution of application workflows consisting of UNICORE jobs
and control constructs:

	RESTful APIs

	JSON workflow description

	Full range of UNICORE user authentication options and AAI
integration

	[image: user-guide-img] Workflow Service Manual
	User Manual with detailed instructions and examples for using the Workflow service.

[image: user-guide-img] Workflow Service Manual

The UNICORE Workflow service provides advanced workflow processing
capabilities using UNICORE resources. The Workflow service provides
graphs of activities including high-level control constructs
(for-each, while, if-then-else, etc), and submits and manages the
execution of single UNICORE jobs.

The Workflow service offers a REST API for workflow
submission and management and uses an easy-to-understand
workflow description syntax in JSON format.

Thanks to a flexible internal workflow model and execution engine, the
Workflow service can be in principle extended with custom workflow
parsers and custom activities.

The Workflow service supports the full range of authentication options
provided by UNICORE and uses JWT tokens for delegated authentication
when submitting jobs to the execution sites.

For more information about UNICORE visit https://www.unicore.eu.

[image: install-img] Installing and setting up the UNICORE Workflow engine

This chapter covers basic installation of the Workflow engine and the
integration of the workflow services into an existing UNICORE system.

As a general note, the Workflow engine is based on a UNICORE/X
instance. General UNICORE configuration concepts (such as user
authentication, gateway integration, shared registry, attribute
sources) fully apply, and you should refer to the UNICORE/X manual
for such details.

Prerequisites

	Java 11 or later

	An existing UNICORE installation with Gateway,
Shared Registry and one ore more UNICORE/X execution systems.

	A server certificate (for production use)

Updating from previous versions

If you update from 7.x, please note that it is a major update, and we
suggest installing from scratch based on the template config files.
The required changes are very similar to the UNICORE/X 7.x to 8.x
update.

Installation

The workflow system is available either as part of the UNICORE Server
bundle [https://sourceforge.net/projects/unicore/files/Servers/Core] (tar.gz or zip),
or as separate Linux packages (deb or rpm) on the UNICORE project website [https://sourceforge.net/p/unicore/wiki/Linux_Repositories/] at sourceforge.

The basic installation procedure is completely analogous to the
installation of a UNICORE/X server.

	If you downloaded the UNICORE server bundle, please untar the tar.gz, review the
configure.properties file and edit the parameters
to integrate the workflow services into your existing UNICORE
environment. Then call ./configure.py to apply your settings to
the configuration files. Finally use ./install.py to install the
workflow server files to the selected installation directory.

	If using the Linux packages, simply install using the package manager
of your system and review the config files.

Setup

After installation, there are some manual steps needed to integrate the
new server into your UNICORE installation.

	Gateway: edit gateway/conf/connections.properties and add the connection
data for the Workflow server. For example,

WORKFLOW = https://localhost:7700

	XUUDB: if you chose to use an XUUDB for the Workflow server,
you might have to add entries to the XUUDB to allow users
access to the workflow engine. Optionally, you can edit the GCID used
by the workflow/servorch servers, so that existing entries in the XUUDB
will match.

	Registry: if the registry is setup to use access control (which is
the default), you need to allow the Workflow server to register in
the Registry. The exact procedure depends on how you configured
your Registry, please refer to the section Access
control in the Registry manual.
If you’re using default certificates and the XUUDB, the required entries can
be added as follows:

$ cd xuudb
$ bin/admin.sh add REGISTRY <workflow>/conf/workflow.pem nobody server

Verifying the installation

Using the UNICORE commandline client, you can
check whether the new server is available and accessible:

$ ucc system-info -l

should include output such as

Checking for <Workflow submission> endpoint ...
... OK, found 1 endpoint(s)
 * https://localhost:8080/WORKFLOW/rest/workflows
 * server v8.0.0 CN=Demo Workflow,O=UNICORE,C=EU
 * authenticated as: 'CN=Demo User, O=UNICORE, C=EU' role='user'

The “authenticated as:” line should list you as user.

Some more info about the server can be obtained via

$ ucc rest get https://localhost:8080/WORKFLOW/rest/workflows

Running a test job

Using UCC again, you can submit workflows

$ ucc workflow-submit /path/to/samples/date1.json

and get the ID of your new workflow back, e.g.

https://localhost:8080/WORKFLOW/rest/workflows/86686f72-b732-42e8-b14d-a8bd514e7edf

API documentation

Since version 8.0, the Workflow engine exclusively uses a
RESTful API for all operations including job submission.

You can find an API reference and usage examples in Workflow description.

[image: config-img] Configuration of the Workflow server

This chapter covers configuration options for the Workflow server.
Since the Workflow server is running in the same underlying
environment (UNICORE Services Environment,
USE [https://github.com/UNICORE-EU/use]),
a lot of the basic configuration options are documented in the
UNICORE/X manual.

Note

The configuration files in the distribution are commented, and contain
example settings for all the options listed here.

Depending on how you installed the server, the files are located on:

	/etc/unicore/workflow (Linux package)

	<basedir>/workflow/conf (standalone installer)

Workflow processing

Some details of the workflow engine’s behaviour can be configured.
All these settings are made in uas.config.

Limits

To avoid too many tasks submitted (possibly erroneously) from a
workflow, various limits can be set:

	workflow.maxActivitiesPerGroup limits the total number
of tasks submitted for a single group (i.e. (sub-)workflow).
By default, this limit is 1000, ie. a maximum number of 1000 jobs can
be created by a single group. Note, that it is not possible to
limit the total number of jobs for any workflow, it can only be applied
to individual parts of the workflow (such as loops).

	workflow.forEachMaxConcurrentActivities limits
the maximum number of tasks in a for-each group that can be active at
the same time (default: 20).

Resubmission

The workflow engine will (in some cases) resubmit failed tasks
to the service orchestrator. To completely switch off
the resubmission,

workflow.resubmitDisable=true

To change the maximum number of resubmissions from the default 3,

workflow.resubmitLimit=3

Cleanup behaviour

This controls the behaviour when a workflow is removed (automatically or
by the user). By default, the workflow engine will remove all child jobs,
but will keep the storage where the files are.
This can be controlled using two properties:

	workflow.cleanupStorage remove storage when workflow is
destroyed (default: false)

	workflow.cleanupJobs remove jobs when workflow is destroyed
(default: true)

XNJS settings

The workflow engine uses the XNJS library for processing workflows.
Some settings for modifying the behaviour are available, and
are usually found in the workflow server’s container.properties file.

An important characteristic is the number of threads used by the
workflow engine for processing. Note, this does not control the number
of concurrent activities, etc., since all XNJS processing is
asynchronous. The default number (4) is usually fine.

This properties is set via

XNJS.numberofworkers=4

Property reference

A complete reference of the properties for configuring the Workflow server
is given in the following table:

	Property name

	Type

	Default value / mandatory

	Description

	workflow.additionalSettings

	filesystem path

	
	Optional file containing additional settings (e.g. XNJS.* settings) only used for the workflow service.

	workflow.cleanupJobs

	[true, false]

	true

	Whether to remove child jobs when the workflow is destroyed.

	workflow.cleanupStorage

	[true, false]

	false

	Whether to cleanup the workflow storage when the workflow is destroyed.

	workflow.fastPollingInterval

	integer >= 1

	20

	Interval in seconds for (slow) polling of job states.

	workflow.forEachConcurrentActivities

	integer >= 1

	100

	Default maximum number of concurrent for-each iterations (user can increase this).

	workflow.forEachMaxConcurrentActivities

	integer >= 1

	200

	Hard limit on the number of concurrent for-each iterations.

	workflow.internalMode

	[true, false]

	false

	Internal mode: Workflow service only uses services deployed in the same UNICORE/X instance.

	workflow.maxActivitiesPerGroup

	integer >= 1

	1000

	Maximum number of workflow activities per activity group.

	workflow.pollingInterval

	integer >= 1

	600

	Interval in seconds for (slow) polling of job states.

	workflow.resubmitDisable

	[true, false]

	false

	Whether to disable automatic re-submission of failed jobs.

	workflow.resubmitLimit

	integer >= 1

	3

	Maximum number of re-submissions of failed jobs.

	workflow.xnjsConfiguration

	string

	n/a

	(deprecated)

[image: update-img] Updating an existing UNICORE Workflow service

This chapter covers the steps required to update an
existing workflow installation (version 8.x).

Stop the server

Stop the workflow server.

Backup

You should make a backup of your existing data and, if necessary, your
config files.

Update jar files

The Java libraries have to be replaced with the new versions.

Update config files

Compare the config files from the new version to your existing
one. Check the changelog for new features that might require updates
to config files.

Restart the servers

Restart the workflow server, and check the logs for any
suspicious error messages!

Registry

The Registry server provides information about available services to clients and other
services. It is a specially configured UNICORE/X server, so please make sure
to read the general UNICORE/X manual as well.

Multiple UNICORE/X sites can share a Registry, greatly simplifying the use of UNICORE services.
Since such a registry is vital to the functioning of a UNICORE-based federation, you can have
more than one.

[image: install-img] Installation

Prerequisites

To run the Registry, you need a Java runtime (headless is enough), in version 11 or later.

UNICORE servers have been most extensively tested on Linux systems, but run on MacOS/X as well.

Please note that

	to integrate into secure production environments, you will need access to a certificate
authority and generate server certificates for all your UNICORE servers.

	to make your UNICORE servers accessible outside of your firewalls,
you should setup and configure a UNICORE Gateway.

A note on paths

The Registry can be installed either from the UNICORE Server bundle [https://sourceforge.net/projects/unicore/files/Servers/Core/] (tar.gz or zip archive) or
from a Linux package on the UNICORE project website [https://sourceforge.net/p/unicore/wiki/Linux_Repositories/] at sourceforge
(i.e. RPM or deb).

Attention

Using the Linux packages, you can install only a single Registry instance per machine
(without manual changes).

The following table gives an overview of the file locations for both
tar.gz and Linux packages:

	Name in
this
manual

	tar.gz, zip

	rpm

	Description

	CONF

	<basedir>/conf/

	/etc/unicore/registry

	Config files

	LIB

	<basedir>/lib/

	/usr/share/unicore/registry/lib

	Java libraries

	LOG

	<basedir>/log/

	/var/log/unicore/registry/

	Log files

	BIN

	<basedir>/bin/

	/usr/sbin/

	Start/stop
scripts

[image: config-img] Registry configuration

A Registry is running in a normal UNICORE/X container, however, you
should use a dedicated UNICORE/X instance for the Registry, making sure no other services
are running.

Thus, most of the UNICORE/X documentation regarding access control, keystores, etc also applies
to the Registry. Please, make sure to read the UNICORE/X documentation
as well.

Registry configuration (CONF/uas.config)

Apart from hostname, port, and other properties, the uas.config file must contain the
following entry:

container.feature.Registry.mode=shared

This setting configures the container to operate as a shared Registry.

Starting and stopping

The Registry is started and stopped like any other
UNICORE/X container using the scripts in the bin folder.

Access control

It is absolutely VITAL that the Registry only contains trusted
entries. Therefore the default access control policies (CONF/xacml2Policies/*.xml)
only allow to add entries only for callers with the role server.

You will need to map the certificates / DNs of all servers wishing to publish into the registry
as having the role server. Please check the UNICORE/X documentation
on how to do that, using an XUUDB or other attribute source.

User / server authentication

While users can read registry content without needing to be authenticated,
servers MUST be authenticated and mapped to role server to be able
to write to the Registry.

To accept servers, the REST interface must be configured for X509
authentication.

As an example the following configuration will achieve this:

#
Authentication for the REST interface
#
container.security.rest.authentication.order=X509
container.security.rest.authentication.X509.class=eu.unicore.services.rest.security.X509Authenticator

For further details we refer also to the UNICORE/X documentation on
authentication and REST services.

Gateway configuration

If running the Registry behind a Gateway, you’ll need to add an entry
to the Gateway’s site list file (connections.properties) that points
to your Registry server. Another option is to use dynamic
registration. In the following, we assume the Registry is named
REGISTRY.

UNICORE/X configuration

To publish the services in a shared registry, configure the
address of the registry in uas.config:

switch on use of external registry
container.externalregistry.use=true

URL
container.externalregistry.url=https://...

optionally you can have more registries
container.externalregistry.url.2=https://...

The entries in the global Registry are updated at a specified
interval. To control this interval, edit a property in
CONF/container.properties:

default termination time for registry entries in seconds
container.wsrf.sg.defaulttermtime=1800

Client configuration

Clients will require the URL of a Registry.
For example, in the UCC preferences file (supply the correct
values for your setup):

registry=https://gwhost:port/REGISTRY/rest/registries/default_registry

[image: links_img] Links

	[image: gh-logo] [https://github.com/UNICORE-EU]

	UNICORE on GitHub [https://github.com/UNICORE-EU]

	[image: sf-logo] [https://sourceforge.net/projects/unicore/]

	UNICORE on SourceForge [https://sourceforge.net/projects/unicore/]

	[image: youtube-logo] [https://www.youtube.com/channel/UCKgNmuu1kjzUn4Uav-cZONw]

	UNICORE on YouTube [https://www.youtube.com/channel/UCKgNmuu1kjzUn4Uav-cZONw]

	[image: twitter-logo] [https://twitter.com/UNICORE_EU]

	UNICORE on Twitter [https://twitter.com/UNICORE_EU]

[image: support_img] Support

If you encounter any issues with the software, please consider opening a ticket
on the general issue tracker https://sourceforge.net/p/unicore/issues.

In case you have direct questions related to the UNICORE software, please use the UNICORE
support mailing lists at https://sourceforge.net/p/unicore/mailman.

Please note also the following places for getting more information:

	[image: unicore-img] [https://www.unicore.eu] Project Website

	https://www.unicore.eu

	[image: support-email-img] Support list

	unicore-support@lists.sf.net

	[image: devel-email-img] Developer’s list

	unicore-devel@lists.sf.net (needs registration)

	[image: source-code-img] [https://github.com/UNICORE-EU] Source code

	https://github.com/UNICORE-EU

[image: bsd-img] License

BSD 2-Clause License

Copyright (c) 1997-2023
Forschungszentrum Jülich GmbH, Fujitsu Labs Europe, ICM Warsaw,
Intel Corporation, CINECA, University of Manchester, T-Systems,
and other contributors to UNICORE: https://www.unicore.eu

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Index

	Resource name

	Description

	Runtime

	Job runtime (wall time)
(in seconds, use “min”,
“h”, “d” for other units)

	Queue

	Batch system queue
(partition) to use

	Nodes

	Number of nodes

	TotalCPUs

	Total number of CPUs

	CPUsPerNode

	Number of CPUs per node

	GPUsPerNode

	Number of GPUs per node

	Memory

	Memory per node

	Reservation

	Reservation ID

	NodeConstraints

	Node constraints

	QoS

	Batch system QoS

	Exclusive

	Request exclusive use of
the allocated node(s)

 _static/example-single-cluster.png
User
access

F‘ UNICOREIX

unicore-host hpc-login

_static/failover.png

_static/email.png

_images/apache.png

_images/api.png

_images/VO.png

_static/file.png

_images/admin.png

_static/folders.png

_images/authentication.png

_images/batch.png

_images/app-package.png

_images/attr-services.png

_images/bsd-license.png

_images/certificate.png

_static/youtube-logo.png
Youlube

_static/data-persistence.png
o'l

_static/data-transfer.png

_static/connections.png

_static/data-management.png

_images/checklist.png

nav.xhtml

 Table of Contents

 		
 Welcome to UNICORE Documentation

_images/data-management.png

_images/data-persistence.png
o'l

_images/configuration.png

_images/connections.png

_images/example-single-cluster.png
User
access

F‘ UNICOREIX

unicore-host hpc-login

_static/usage.png

_images/failover.png

_static/update.png

_images/data-transfer.png

_static/user.png

_images/email.png

_static/user-guide.png

_static/workflow.png

_static/work-started.png

_images/folders.png

_static/xuudb.png
Gateway

Attribute source(s)
‘mapping of users to local logins
(XUUDB PAM, local mapfile, ...

4

Local S (s Sl LSF, o)

_static/xacml.png

_static/unicorex-tsi-interface.png

_static/unicore.png
Web. - i :

Applications

UNIC#RE

.Launch batch jobs
~Submit workflows

-Manage data

Storage

Authentication

Authorization

Users and
Communities

_static/unicorex.png
Gateway

Attribute source(s)
Bl mapping of users to local logins
¢ (XUUDB, PAM, local mapfile. ...)

* 1

Local S (s Sl LSF, o)

_images/gateway.png
Attribute source(s)
‘mapping of users to local logins
¢ (XUUDB, PAM, local mapfile. ...)

4

Local S (s Sl LSF, o)

_images/github-logo.png
() GitHub

_images/installer.png

_images/integration.png

_images/groovy.png

_images/idb.png

_images/load-balancer.png

_images/logo-unicore.png
-

_images/job-desc.png

_images/links.png

_images/move-files.png

_images/options-list.png

_images/metadata.png

_images/registry.png

_images/run-jobs.png

_images/overview.png

_images/pdp.png

_images/sf-logo.png
<> SOURCEFORGE

_images/security.png

_images/settings.png
@,

_images/start.png

_images/support.png

_images/share.png

_images/source-code.png
<>

_images/tunneling.png

_images/twitter-logo.png

_images/testing.png

_images/tsi.png
Gateway

Atribute source(s)

‘mapping of users to local logins
(XUUDB, PAM, local mapfile. ...)

Local S (s Sl LSF, o)

_images/uftp.png

_static/metadata.png

_images/unicore-arch.png
Web Command line

Cllents

< . “o
B wE 9
Workflows Jobs Data Management Discovery

Services

L
o
i
O
Z
=)

Policies
Compute Storage

Resources Security

_static/move-files.png

_static/minus.png

_static/overview.png

_static/options-list.png

_static/integration.png

_static/installer.png

_static/links.png

_static/job-desc.png

_static/logo-unicore.png
-

_static/load-balancer.png

_images/FAQ.png

_images/REST-APIs.png
Gateway

Attribute source(s)
‘mapping of users to local logins
(XUUDB, PAM, local mapfile. ...)

4

Local S (s Sl LSF, o)

_images/unicore-unity.png
2. authenticate
ﬂ 1. credentials VPSS Services

User

3. use

_images/unicore.png
Web. - i :

Applications

UNIC#RE

.Launch batch jobs
~Submit workflows

-Manage data

Storage

Authentication

Authorization

Users and
Communities

_images/unicore-components.png
Gateway

Attribute source(s)
‘mapping of users to local logins
(XUUDB, PAM, local mapfile. ...)

4

Local S (s Sl LSF, o)

_images/unicore-delegation.png
lln\okesse“‘ce . 2. Tnvokes service ‘

UNICORE UNICORE
server A server B

User

_images/update.png

_images/usage.png

_images/unicorex-tsi-interface.png

_images/unicorex.png
Gateway

Attribute source(s)
Bl mapping of users to local logins
¢ (XUUDB, PAM, local mapfile. ...)

* 1

Local S (s Sl LSF, o)

_images/user-guide.png

_static/github-logo.png
() GitHub

_static/gateway.png
Attribute source(s)
‘mapping of users to local logins
¢ (XUUDB, PAM, local mapfile. ...)

4

Local S (s Sl LSF, o)

_static/idb.png

_static/groovy.png

_images/unicore-auth.png
UNICORE/X
Resource
> Security

[o [200
uthN handlers

source(s)
1. authenticate session

1

e.g. username 2. check

andpassword | =
..CN=User*

I

|
1
|
3. query .CN=User
_duery ONTUser” ~
_—
xlogin="hpe1",
1
|
1
I
I

group="hpc*,
role="user",

4.check policies

pa

5. access as hpel*

_static/FAQ.png

_static/REST-APIs.png
Gateway

Attribute source(s)
‘mapping of users to local logins
(XUUDB, PAM, local mapfile. ...)

4

Local S (s Sl LSF, o)

_images/xuudb.png
Gateway

Attribute source(s)
‘mapping of users to local logins
(XUUDB PAM, local mapfile, ...

4

Local S (s Sl LSF, o)

_images/youtube-logo.png
Youlube

_static/apache.png

_static/api.png

_static/VO.png

_static/admin.png

_static/twitter-logo.png

_static/unicore-arch.png
Web Command line

Cllents

< . “o
B wE 9
Workflows Jobs Data Management Discovery

Services

L
o
i
O
Z
=)

Policies
Compute Storage

Resources Security

_static/uftp.png

_static/unicore-components.png
Gateway

Attribute source(s)
‘mapping of users to local logins
(XUUDB, PAM, local mapfile. ...)

4

Local S (s Sl LSF, o)

_static/unicore-auth.png
UNICORE/X
Resource
> Security

[o [200
uthN handlers

source(s)
1. authenticate session

1

e.g. username 2. check

andpassword | =
..CN=User*

I

|
1
|
3. query .CN=User
_duery ONTUser” ~
_—
xlogin="hpe1",
1
|
1
I
I

group="hpc*,
role="user",

4.check policies

pa

5. access as hpel*

_static/unicore-unity.png
2. authenticate
ﬂ 1. credentials VPSS Services

User

3. use

_static/unicore-delegation.png
lln\okesse“‘ce . 2. Tnvokes service ‘

UNICORE UNICORE
server A server B

User

_static/testing.png

_static/support.png

_static/tunneling.png

_static/tsi.png
Gateway

Atribute source(s)

‘mapping of users to local logins
(XUUDB, PAM, local mapfile. ...)

Local S (s Sl LSF, o)

_images/workflow.png

_images/xacml.png

_static/bsd-license.png

_static/certificate.png

_static/batch.png

_static/configuration.png

_static/checklist.png

_static/cloud-services.png

_static/settings.png
@,

_static/security.png

_static/share.png

_static/sf-logo.png
<> SOURCEFORGE

_static/start.png

_static/source-code.png
<>

_static/plus.png

_static/pdp.png

_static/registry.png

_static/run-jobs.png

_static/attr-services.png

_static/authentication.png

_static/app-package.png

